Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Source.push_back(Color);






}

}

generateCombinations< string> (Source, Ptid, Value); delete Buf;

}

if(MessageId == 2){

vector< double> Source; double *ImportantNumber; NumBytes = NumBytes / sizeof(double); ImportantNumber = new double[NumBytes]; pvm_upkdouble(ImportantNumber, NumBytes, 1); copy(ImportantNumber, ImportantNumber +(NumBytes + 1), inserter(Source, Source.begin())); generateCombinations< double> (Source, Ptid, Value); delete ImportantNumber;

}

Здесь используется тег MessageId, позволяю щ ий распознать, с каким типом данных м ы работае м. Но в С++ воз м ожно более удачное решение. Если тег MessageId содержит число 1, значит, м ы работае м со строка м и. Следовательно, м ожно сделать сле-лую щ ее объявление: vector< string> Source;

Если тег MessageId содержит число 2, то м ы знае м, что должны работать с числа м и с плаваю щ ей точкой, и поэто м уделае м такое объявление: vector< double> Source;

Объявив, какого типа данные будет содержать вектор Source, остальную часть функции в програ мм е pvm_generic_combination можно легко обоб щ ить. В листин- r e 6.6 обратите вни м ание на то, что каждая инструкция if() вызывает функцию generateCombinations (), которая является шаблонной. Эта шаблоннал архитектура позво л яет достичь такой степени универсальности, которая распростра н яет сце н арии SPMD и MPMD на наши PVM-програ мм ы. Мы вер н е м ся к обсуждению нашей програм м ы pvm_generic_combination после расс м отрения базовых механизмов PVM-среды. Важно отметить, что контейнерные С++-классы, потоковые классы и шаблонные алгорит м ы значительно усиливают гибкость PVM-програ мм ирования, которую невозможно было бы так просто реализовать в других PVM-средах. Именно такая гибкость создает воз м ожности д л я построения высокоорганизованных и элегантных парал л е л ьных архитектур.

 

Реализация модели MPMD (MIMD) с помощью PVM-и С++-средств

 

В то время как м оде л ь SPMD испо л ьзует функцию pvm_spawn () д л я создания некоторого чис л а задач, выпо л няю щ их одну и ту же програ мм у, но на потенциально раз л ичных наборах данных и л и ресурсов, м оде л ь MPMD испо л ьзует функцию pvm_spawn () д л я создания задач, которые выпо л няют раз л ичные програм м ы на раз л ичных наборах данных. Как с помо щ ью одной С++-программы реализовать модель MPMD (на основе PVM-функций), показано в л истинге 6.7.

6.2. Библиотека PVM для языка С++ 231

// Листинг 6.7. Использование PVM для реализации // MPMD-модели вычисления

int main(int argc, char *argv[]) {

int Taskl[20]; int Task2[50]; int Task3[30]; //...

pvm_spawn («pvm_generic_combination», NULL, 1,

«hostl», 20, Taskl); pvm_spawn («generate_plans», argv, 0, " ", 50, Task2); pvm_spawn(«agent_filters», argv++, l, «host 3», 30, & Task3); //...

}

При выполнении кода, представленного в листинге 6.7, создается 100 задач. Первые 20 задач генерируют сочетания. Слелующие 50 по мере создания сочетаний генерируют планы на их основе. Последние 30 задач отфильтровывают самые удачные планы из набора планов, сгенерированного предыдущи м и 50 задачами. Уже только это краткое описание позволяет ощутить отличие модели MPMD от модели SPMD, в которой все программы, порожденные функцией pvm_spawn (), были одинаковы. Здесь же за работу, назначаемую PVM-задача м, «отвечают» програ мм ы pvm_generic_combination, generate_plans и agent_filters. Все эти задачи выполняются параллельно и работают с собственны м и набора м и данных, нес м отря на то что одни наборы являются результато м преобразования дру г их. Про г ра мм а pvm_generic_combination преобразует свой входной набор данных в набор, который зате м может использовать программа generate_plans. Программа generate_plans, в свою очередь, преобразует входной набор данных в набор, который может затем использовать программа agent_filters. Очевидно, что эти задачи должны обмениваться сообщениями. Эти сообщения представляют собой входную иуправляющую информацию, которая передается между процесса м и. Необходи м о также отметить, что в листинге 6.7 функция pvm_spawn () используется для размещения 20 задач pvm_generic_combination на компьютере с именем hostl. Задача generate_plans была размещена на 50 безымянных процессорах, но каждая из этих 50 задач получила при это м один и тот же аргу м ент ко м андной строки с по м ощью параметра argv. Задачи agent_filters также были направлены на конкретный ко м пьютер (с именем host 3), и каждая задача получила один и тот же аргумент командной строки посредством параметра argv. Этот пример — лишь еще одно подтверждение гибкости и мо щ и библиотеки PVM. Некоторые варианты реализации модели MPMD с использованием среды PVM показаны на рис. 6.5.

При желании мы можем воспользоваться преиму щ ествами конкрет н ых ресурсов конкретных компьютеров или же «положиться на судьбу» в виде «заказа» произвольных безымянных компьютеров. Мы можем также назначить рааличные виды работ различным задачам одновременно. На рис. 6.5 компьютер А представляет собой компьютер с массовым параллелизмом (МП-компьютер), а компьютер В осна щ ен некоторым количеством специализированных математических процессоров. Также отметьте, что PVM-среда в данном случае состоит из таких компьютеров, как PowerPCs, Spares, Crays и т.д. В одних случалх можно не беспокоиться о конкретных возможностях компьютеров в PVM-среде, а в дру г их требуется иной подход. Использование функции pvm_spawn () позволяет С++-программисту не указывать конкретный компьютер для решения задачи, когда это не важно. Но если вам известно, что компьютер осна щ ен специализированными средствами, то их можно эффективно использовать, определив соответствую щ ий параметр при вызове функции pvm_spawn ().

Рис. 6.5. Неко т орые вариан т ы модели MPMD дос т упны для реализации благодаря использованию среды PVM

§ 6.1. Обозначение сочетаний

Предположим, м ы хотели бы набрать команду програм м истов (в количестве восьми человек) из 24 кандидатов. Сколько различных ко м анд из восьми программистов можно было бы составить из этого числа кандидатов? Один из результатов, который следует из основного закона комбинаторики, говорит о том, что су щ ествуе т 735 471 различных команд, состоя щ их из восьми программистов, которые мот быть выбраны из 24 кандидатов. Обозначение C(n, r) читается как сочетание из n элементов по г(и означает количество ко м бинаций из n эле м ентов по r). Сочетание C(n, r) вычисляется по формуле:

6.3. Базовые меха н измы PVM 233

n\

r\(n-r)\

Если у нас есть м н ожество, которое представляет сочетания, например {a, b, C}, то считается, что оно совпадает с множеством {b, a, c} или {c, b, a}. Другими словами, нас интересует не порядок членов в этом множестве, а сами члены. Многие параллельные програМхМЫ, а именно программы, использую щ ие алгоритмы поиска, эвристические методы и средства искусственного интеллекта, обрабатывают огромные множества сочетаний и их близких родственников перестановок.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.