Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Тактильная чувствительность 77 страница






Наиболее распространены ртутные Т. ж., т. к. ртуть остаётся жидкой в диапазоне темп-р от -38 до 356 °С при нормальном давлении и до 750 °С при небольшом повышении давления (для чего капилляр заполняют азотом). Кроме того, ртуть легко поддаётся очистке, не смачивает стекло, и её пары в капилляре создают малое давление. Т. ж. изготавливают из определённых сортов стекла и подвергают спец. термин, обработке (" старению"), устраняющей смещение нулевой точки шкалы, связанное с многократным повторением нагрева и охлаждения термометра (поправку на смещение нуля шкалы необходимо вводить при точных измерениях). Т. ж. имеют шкалы с различной ценой деления от 10 до 0, 01 °С. Точность Т. ж. определяется ценой делений его шкалы. Для обеспечения требуемой точности и удобства пользуются Т. ж. с укороченной шкалой; наиболее точные из них имеют на шкале точку 0 °С независимо от нанесённого на ней температурного интервала. Точность измерений зависит от глубины погружения Т. ж. в измеряемую среду. Погружать Т. ж. следует до отсчитываемого деления шкалы или до специально нанесённой на шкале черты (хвостовые Т. ж.). Если это невозможно, вводят поправку на выступающий столбик, к-рая зависит от измеряемой темп-ры, темп-ры выступающего столбика и его высоты. Осн. недостатки Т. ж. - значительная тепловая инерция и не всегда удобные для работы габариты. К Т. ж. спец. конструкций относят термометры метеорологические, метастатические термометры, медицинские и др. Медицинские ртутные Т. ж. имеют укороченную шкалу (34-42 °С) и цену деления шкалы 0, 1 °С. Действуют они по принципу макс, термометра - ртутный столбик в капилляре остаётся на уровне макс, подъёма при нагревании и не опускается до встряхивания термометра.

Жидкостные термометры: а -комнатный термометр с наружной шкалой; б - лабораторный термометр с вложенной шкалой, имеющий на шкале точку 0°С.

Лит. см. при ст. Термометрия. Д. И. Шаревская.

ТЕРМОМЕТР МАНОМЕТРИЧЕСКИЙ, прибор для измерения температуры, действие к-рого основано на одном из трёх принципов: тепловом расширении жидкости, температурной зависимости давления газа и температурной зависимости давления насыщенных паров жидкости. Различают Т. м. газовые (азот), жидкостные (ртуть) и конденсационные, или парожидкостные (хлористый этил и др.). Конструктивно они представляют собой герметичную систему, состоящую из баллона, соединённого капилляром с пружинным манометром (показывающим или самопишущим). Т. м. широко распространены в качестве приборов технич. назначения в диапазоне темп-р от - 60 до 550 " С. Благодаря длине капилляра (до 60 м) они могут служить дистанционными термометрами. Шкала манометра, измеряющего давление в баллоне, градуирована непосредственно в °С.

Мит. см. при ст. Термометрия. Д. И. Шаревская.

ТЕРМОМЕТР ОПРОКИДЫВАЮЩИЙСЯ глубоководный, ртутный термометр для измерения темп-ры воды в водоёмах на различных глубинах. Капилляр Т. о. / (см. рис.) выше резервуара 2 имеет сужение и виде вилки 3, после чего он расширяется и образует петлю, а далее переходит в обычный цилиндрич. канал, оканчивающийся небольшим расширением 4. После того как показания термометра установились, его резко поворачивают вверх резервуаром, вызывая этим отрыв столбика ртути, вошедшей в капилляр через сужение. Длина столбика ртути в капилляре служит мерой темп-ры. Петля предохраняет капилляр от дополнит, попадания в него ртути из резервуара при повышении темп-ры в более высоких слоях воды. В защитную стеклянную трубку Т. о. вмонтирован также обычный термометр 5, к-рый показывает темп-ру в момент отсчёта и служит для внесения поправки в показания Т. о.

Лит.: Руководство по гидрологическим работам в океанах и морях, Л., 1967; Д е р ю г и н К. К., Степанюк И. А., Морская гидрометрия, Л., 1974.

Глубоководный опрокидывающийся термометр.

ТЕРМОМЕТР СОПРОТИВЛЕНИЯ, прибор для измерения температуры, принцип действия к-рого основан на изменении электрич. сопротивления чистых металлов, сплавов и полупроводников с темп-рой (на увеличении сопротивления R с повышением темп-ры Т у металлов и обратная зависимость R от Г у полупроводн иков).

Общий вид платинового термометра сопротивления (а) и его чувствительный элемент (б): 1 -стальной чехол; 2 - чувствительный элемент; 3- штуцер для установки термометра; 4 - головка для присоединения термометра к электроизмерительному прибору; 5 -слюдяной каркас; 6 -бифнлярная обмотка из платиновой проволоки; 7 - серебряная лента; 8 - слюдяная накладка; 9 - серебряные выводы.

Широкое распространение получили Т. с. из чистых металлов, особенно платины (температурный коэфф. сопротивления

[ris]
и меди(а = 0, 0044 грае) -1 ), к-рые конструктивно представляют собой металлич. проволоку или ленту, намотанную на жёсткий каркас (из кварца, фарфора, слюды ), заключённый в защитную оболочку (из металла, кварца, фарфора, стекла ) с головкой, через которую проходят 2, З или 4 (наиболее точные Т. с. ) вывода, соединяющие Т. с. с измерительным прибором (рис. ). Платиновые Т. с. применяют для измерения темп-р в пределах от -263 до 1064 " С, медные - от -50 до 180 °С. Материал и конструкция Т. с. должны обеспечивать его чувствительность и стабильность, достаточные для требуемой точности измерений в заданном диапазоне темп-р при определённых условиях применения (вибрации, агрессивные среды и др. ). Точность измерений темп-ры зависит также от точности прибора, к-рым измеряют сопротивление. Т. с. технич. применения работают в комплекте с м ост ами измерительными, потенциометрами, логометрами (показывающими и самопишущими), шкалы к-рых градуированы непосредственно в °С в соответствии с таблицами зависимости R от Т для данного типа Т. с. При помощи высокоточных платиновых Т. с. воспроизводится Международная практическая температурная шкала, проводятся точные измерения темп-ры и градуировка др. термометров в диапазоне 14-900 К.

В качестве лабораторных иногда применяют индиевые Т. с. (4-300 К) и бронзовые Т. с. (1-4 К).

Т. с. из полупроводников (композиционный углерод, легированный германий и др.) широко применяются для измерения низких темп-р (0, 1-100 К) благодаря их высокой чувствительности. Т. с. этого вида представляют собой полупроводниковые пластинки (плёнки) различных габаритов и формы с приваренными металлич. выводами, помещаемые часто в защитную оболочку. В диапазоне темп-р 4, 2-13, 8 К применяют как особо точные германиевые Т. с. При темп-pax выше 100 К применение полупроводниковых Т. с. ограничено (сказываются их нестабильность и разброс индивидуальных характеристик, см. Терморезистор). Лит. см. при ст. Термометрия. Д. И. Шаревская.

ТЕРМОМЕТРИЯ (от термо... и ...метрия), раздел прикладной физики, посвящённый разработке методов и средств измерения температуры. Т. является также разделом метрологии, в её задачи входит обеспечение единства и точности температурных измерений: установление температурных шкал, создание эталонов, разработка методик градуировки и поверки приборов для измерения темп-ры. Темп-pa не может быть измерена непосредственно. Об её изменении судят по изменению других физ. свойств тел (объёма, давления, электрич. сопротивления, эдс, интенсивности излучения и др. ), связанных с темп-рой определёнными закономерностями. Поэтому методы измерения темп-ры являются по существу методами измерения указанных выше термометрич. свойств, к-рые должны однозначно зависеть от темп-ры и измеряться достаточно просто и точно. При разработке конкретного метода или прибора необходимо выбрать термометрич. вещество, у к-рого соответствующее свойство хорошо воспроизводится и достаточно сильно изменяется с темп-рой.

Для измерения темп-ры (при любом методе ) необходимо определить температурную шкалу.

.Методы измерения темп-ры разнообразны; они зависят от принципов действия используемых приборов, диапазонов измеряемых темп-р, условий измерений и требуемой точности. Их можно разделить на две осн. группы: контактные методы - собственно термометрия, и бесконтактные методы - Т. излучения, или пирометрия.

Общим и существенным для всех контактных методов измерения темп-ры является то, что всякий прибор, измеряющий темп-ру среды, должен находиться с ней в тепловом равновесии (см. Температура), т. е. иметь одинаковую со средой темп-ру.

Осн. узлами всех приборов для измерения темп-ры являются: чувствительный элемент, где реализуется термометрич. свойство, и связанный с ним измерительный прибор, к-рый измеряет численные значения этого свойства.

В газовой Т. термометрич. свойством является температурная зависимость давления газа (при постоянном объёме ) или объёма газа (при постоянном давлении), соответственно различают - газовый термометр постоянного объёма и газовый термометр постоянного давления. Термометрич. вещество в этих термометрах - газ, приближающийся по своим свойствам к идеальному. Уравнение состояния идеального газа pV = RT устанавливает связь абс. темп-ры Т с давлением р (при постоянном объёме V) или Т с объёмом V (при постоянном давлении). Газовым термометром измеряют термодинамич. темп-ру. Точность прибора зависит от степени приближения используемого газа (азот, гелий) к идеальному. В конденсационных термометрах термометрич. свойством является температурная зависимость давления насыщенных паров жидкости. Чувствительный элемент - резервуар с жидкостью и находящимися с ней в равновесии насыщенными парами - соединён капилляром с манометром. Термометрич. вещества - обычно низкокипящие газы: кислород, аргон, неон, водород, гелий. Для вычисления темп-ры по измеренному давлению пользуются эмпирич. соотношениями. Диапазон применения конденсационного термометра ограничен. Высокоточные термометры (до 0, 001 град) служат для реализации реперных точек (см. Международная практическая температурная шкала).

В термометрах жидкостных термометрич. свойством является тепловое расширение жидкостей, термометрич. веществом - гл. обр. ртуть. При определении темп-ры не производят измерений объёма жидкости; для этого при изготовлении калибруют капилляр термометра в " С, т. е. по его длине наносят отметки с интервалами, соответствующими изменению объёма при заданном изменении темп-ры. Точность термометра зависит от точности калибровки.

В термометрах манометрических, к-рые являются приборами технич. применения, используются те же термометрич. свойства, что и в жидкостных или газовых термометрах.

В термометрах сопротивления термометрич. свойством является температурная зависимость электрич. сопротивления чистых металлов, сплавов, полупроводников; термометрич. вещества выбираются в зависимости от области температурных измерений и требуемой точности. Для определения темп-ры по измеренному электрич. сопротивлению пользуются эмпирич. формулами или таблицами. Термометры для точных измерений (платина, легированный германий ) градуируются индивидуально.

В термометрах термоэлектрических с термопарой в качестве чувствительного элемента термометрич. свойством является термо-эдс термопары; термометрич. вещества разнообразны и выбираются в зависимости от области применения и требуемой точности. Для определения темп-ры по измеренной эдс также пользуются эмпирич. формулами или таблицами. В связи со спецификой термоэлектрич. термометра (дифференциального прибора ) его точность зависит от точности поддержания и измерения темп-ры одного из спаев термопары (" реперного" спая ).

Измерительные приборы, к-рыми определяют численные значения термометрич. свойств (манометры, потенциометры, логометры, мосты измерительные, милливольтметры и т. д. ), наз. вторичными приборами. Точность измерения темп-ры зависит от точности вторичных приборов. Термометры технич. применения обычно индивидуально не градуируются и комплектуются соответствующими вторичными приборами, шкала к-рых нанесена непосредственно в °С.

В диапазоне криогенных (ниже 90 К ) и сверхнизких (ниже 1 К ) темп-р, кроме обычных методов измерения темп-р, применяются специфические (см. Низкие температуры). Это - магнитная термометрия (диапазон 0, 006-30 К; точность до 0, 001 град); методы, основанные на температурной зависимости Мёссбауэра эффекта и анизотропии -у-излучения (ниже 1 К ), термошумовой термометр с преобразователем на Джозефсона эффекте (ниже 1 К ). Особой сложностью Т. в диапазоне сверхнизких темп-р является осуществление теплового контакта между термометром и средой.

Для обеспечения единства и точности температурных измерений служит Гос. эталон единицы температуры - келъвин, что позволяет в диапазоне 1, 5-2800 К воспроизводить Международную практическую температурную шкалу (МПТШ ) с наивысшей достижимой в настоящее время точностью. Путём сравнения с эталоном значения темп-р передаются образцовым приборам, по к-рым градуируются и проверяются рабочие приборы для измерения темп-ры. Образцовыми приборами являются германиевые (1, 5-13, 8 К ) и платиновые [13, 8-903, 9 К (630, 7 °С ) ] термометры сопротивления, платинородий (90% Pt, 10% Rd ) - платиновая термопара (630, 7-1064, 4 °С ) и оптич. пирометр (выше 1064, 4 °С ).

Лит.: Попов М. М., Термометрия и калориметрия, 2 изд., М., 1954; Методы измерения температуры. Сб., ч. 1 - 2, М., 1954; Температура и её измерение. Сб., пер. с англ., М., 1960; С основе кий А. Г., Столярова H. И., Измерение температур, М., 1970. Д. H. Астров, Д. И. Шаревская.

ТЕРМОМЕТРЫ МЕТЕОРОЛОГИЧЕСКИЕ, группа термометров жидкостных спец. конструкции, предназначенных для метеорологич. измерений гл. обр. на метеорологич. станциях. Различные Т. м. в зависимости от назначения отличаются размерами, устройством, пределами измерений и ценой деления шкалы.

Рис. 1. Устройство максимального термометра.

Рис. 2. Устройство минимального термометра.

Для определения темп-ры и влажности воздуха пользуются ртутными п с и хр о м е т р и ч е с к и м и Т. м. в стационарном и аспирационном психрометре. Цена их деления 0, 2 °С; нижний предел измерения -35 °С, верхний 40 °С (или соответственно -25 °С и 50 °С ). При темп-pax ниже -35 °С (вблизи точки замерзания ртути ) показания ртутного Т. м. становятся ненадёжными; поэтому для измерения более низких темп-р пользуются низкоградусным спиртовым Т. м., устройство к-рого аналогично психрометрическому, цена деления его шкалы 0, 5 °С, а пределы измерений варьируют: нижний -75, -65, -60 °С, а верхний 20, 25 °С.

Для измерения макс, темп-ры за нек-рый промежуток времени применяется ртутный максимальный Т. м. Цена деления его шкалы 0, 5 °С; пределы измерения от -35 до 50 °С (или от -20 до 70 °С ), рабочее положение почти горизонтальное (резервуар слегка опущен ). Показания макс. значений темп-ры сохраняются благодаря наличию в резервуаре 1 (рис. 1 ) штифта 2 и вакуума в капилляре 3 над ртутью. При повышении темп-ры избыток ртути из резервуара вытесняется в капилляр через узкое кольцеобразное отверстие между штифтом и стенками капилляра и остаётся там и при понижении темп-ры (т. к. в капилляре вакуум). Т. о., положение конца столбика ртути относительно шкалы соответствует значению макс, темп-ры. Приведение показаний термометра в соответствие с темп-рой в данный момент производят его встряхиванием. Для измерения минимальной темп-ры за нек-рый промежуток времени используются спиртовые минимальные Т. м. Цена деления шкалы 0, 5 °С; нижний предел измерений варьирует от -75 до -41 °С, верхний от 21 до 41°С. Рабочее положение Т.- горизонтальное. Сохранение минимальных значений обеспечивается находящимся в капилляре 1 (рис. 2 ) внутри спирта штифтом - указателем 2. Утолщения штифта меньше внутреннего диаметра капилляра; поэтому при повышении темп-ры спирт, поступающий из резервуара в капилляр, обтекает штифт, не смещая его. При понижении темп-ры штифт после соприкосновения с мениском столбика спирта перемещается вместе с ним к резервуару (т. к. силы поверхностного натяжения плёнки спирта больше сил трения) и остаётся в ближайшем к резервуару положении. Положение конца штифта, ближайшего к мениску спирта, указывает минимальную темп-ру, а мениск -темп-ру в настоящий момент. До установки в рабочее положение минимальный Т. м. приподнимают резервуаром кверху и держат, пока штифт не опустится до мениска спирта.

Для определения темп-ры поверхности почвы пользуются ртутным Т. м. Деления его шкалы 0, 5 °С; пределы измерения варьируются: нижний от -35 до -10 °С, верхний от 60 до 85 °С. Измерения темп-ры почвы на глубинах 5, 10, 15 и 20 см производят ртутным коленчатым Т. м. (Савинова). Цена деления его шкалы 0, 5 °С; пределы измерения от -10 до 50 °С. Вблизи резервуара термометр изогнут под углом 135°, а капилляр от резервуара до начала шкалы теплоизолирован, что уменьшает влияние на показания Т. слоя почвы, лежащего над его резервуаром. Измерения темп-ры почвы на глубинах до неск. м осуществляются ртутными почвенно-глубинными Т. м., помещёнными в спец. установках. Цена деления его шкалы 0, 2 °С; пределы измерения варьируют: нижний -20, -10°С, а верхний 30, 40 °С. Менее распространены ртутно-талиевые психрометрические Т. м. с пределами от -50 до 35 °С и нек-рые др.

Кроме Т. м., в метеорологии применяются термометры сопротивления, термоэлектрические, транзисторные, биметаллические, радиационные и др. Термометры сопротивления широко используются в дистанционных и автоматич. метеорологических станциях (металлич. резисторы - медные или платиновые) и в радиозондах (полупроводниковые резисторы ); термоэлектрические применяются для измерения градиентов темп-ры; транзисторные термометры (термотранзисторы ) - в агрометеорологии, для измерения темп-ры пахотного слоя почвы; биметаллич. термометры (термопреобразователи ) применяются в термографах для регистрации темп-ры, радиационные термометры - в наземных, самолётных и спутниковых установках для измерения темп-ры различных участков поверхности Земли и облачных образований.

Лит.: Стернзат М. С., Метеорологические приборы и наблюдения, Л., 1968. М. С. Стернзат.

ТЕРМОМЕХАНИЧЕСКАЯ ОБРАБОТКА металлов (ТМО ), совокупность операций деформации, нагрева и охлаждения (в различной последовательности ), в результате к-рой формирование окончат, структуры металла, а следовательно, и его свойств происходит в условиях повышенной плотности и оптимального распределения несовершенств строения, созданных пластич. деформацией. Т. о., особенностью этого способа изменения свойств металлич. сплавов является сочетание операций обработки металлов давлением и термической обработки. Возможность применения ТМО определяется тем, что на процессы структурных превращений существ, влияние оказывают присутствующие в реальных сплавах несовершенства строения (ди с л ок ации, дефекты упаковки, вакансии). С др. стороны, в результате нек-рых структурных изменений образуются новые несовершенства, а также происходит перераспределение имеющихся несовершенств. Отсюда механизм и кинетика структурных изменений при ТМО зависят от характера и плотности несовершенств строения и, в свою очередь, влияют на их количество и распределение. Для классификации технологач. схем ТМО целесообразно выбрать в качестве классификац. признака последовательность проведения пластич. деформирования и термин, обработки (рис. ).

Классификация видов термомеханической обработки; ПТМО - предварительная термомеханическая обработка ВTMO - высокотемпературная термомеханическая обработка; ВТМПО - высокотемпературная термомеханическая поверхностная обработка; ВТМнзО - высокотемпературная термомеханическая изотермическая обработка; НТМО - низкотемпературная термомеханическая обработка; НТМизО - низкотемпературная термомеханическая изотермическая обработка; ВНТМО - высоко-низкотемпературная термомеханическая обработка; НВТМО - низко-высокотемпературная термомеханическая обработка; ДМО-1 - деформация мартенсита с последующим отпуском; ДМО-2 - деформация мартенсита после ВТМО с последующим отпуском; МТО - деформация немартенситных структур на площадке текучести, в том числе многократная ММТО; МТО-1 - механике-термическая обработка деформацией при комнатной температуре со старением; МТО-2 -механико-термическая обработка деформацией при повышенных температурах со старением; НВТМУ - наследственное высокотемпературное термомеханическое упрочнение; А1 и Аз - нижняя и верхняя критические точки; МИ - температура начала мартенситного превращения. Термомеханическая обработка I и IV классов основана на явлении наследования упрочнения, сохраняющегося после соответствующей термической обработки.

Совмещение пластич. деформации с фазовыми превращениями получило впервые практич. реализацию в нач. 20 в. при осуществлении патентирования в процессе произ-ва стальной проволоки. Использование по своеобразной технологич. схеме комбинированного воздействия пластич. деформации и термич. обработки привело к получению таких высоких механич. свойств, к-рые были недостижимы при всех др. способах упрочняющей обработки. В 30-е гг. 20 в. применялась др. схема ТМО при упрочнении бериллиевой бронзы: закалка, холодная деформация, старение; такая обработка также обеспечила существ, повышение механич. свойств сплава.

Развитие ТМО и создание её осн. положений оказались возможными лишь на базе теории дислокаций, в частности тех её разделов, в к-рых устанавливается связь между несовершенствами строения и процессами структурообразования при превращениях. Исторически первой опробованной схемой термомеханич. упрочнения маш.-строит, стали (1954, США) была низкотемпературная термомеханич. обработка (НТМО). Смысл переохлаждения аустеиита в схеме НТМО заключается в том, чтобы вести деформацию ниже темп-ры его рекристаллизации. Этим НТМО отличается от разработанной несколько позднее в СССР высокотемпературной термомеханич. обработки (ВТМО ), к-рая в дальнейшем получила большее распространение в связи с необходимостью повышения механич. свойств массовых сортов стали, применяемых в совр. машиностроении.

Темп-pa проведения деформации при ВТМО лежит обычно выше верхней критич. точки полиморфного превращения, поэтому неизбежны попытки проведения аналогии между ВТМО и термич. обработкой с прокатного (или ковочного ) нагрева. Принципиальное различие между этими видами обработки состоит в том, что при ВТМО создаются такие условия высокотемпературной пластич. деформации и последующей закалки, при к-рых подавляется развитие рекристаллизац. процессов и создаётся особое структурное состояние, характеризующееся повышенной плотностью несовершенств и особым их распределением с образованием субструктуры полигонизации (см. Возврат металлов ). Отсюда и экспериментально наблюдаемая развитая мозаичность строения стали после ВТМО, повышенная тонкая субмикроскопич. неоднородность строения и состава мартенсита, к-рая обеспечивает после ВТМО уникальное сочетание свойств, когда наряду с повышением прочности одновременно увеличиваются пластичность, вязкость и сопротивление хрупкому разрушению.

Механические свойства стали после ВТМО и НТМО

                 
  Обработка Образцы для испытаний Предел прочности sв кг с/мм2 Предел текучести sт, кгс/мм2 Относительное удлинение б, % Относительное сжатие ф % Ударная вязкость ан, кгс • м/ см2  
  ВТМО + низкий отпуск Плоские (нешлифованные) 220 - 260 190-210 7-10 20-40 4-5  
  НТМО + низкий отпуск Круглые (шлифованные) 240-280 200-230 5-7 15-30 3-4  
                 

Примечание: 1 кгс/мм1 = 10 Мн/м2.

В табл. сопоставлены свойства типичной среднеуглеродистой маш.-строит, легированной стали после ВТМО и НТМО. ТМО приводит к повышению усталостных характеристик; особенно велик прирост времени до разрушения в зоне огранич. выносливости после ВТМО. В.результате этой обработки повышается

ударная выносливость стали, снижается порог хладноломкости и практически ликвидируется опасная склонность к хрупкости при отпуске (чего не наблюдается после НТМО ). Развитие технологии ВТМО привело к созданию новой схемы - ВТМизО, в которой высокотемпературная деформация сочетается с изотермическим превращением. Изделия (в частности, рессоры ), обработанные по этой схеме, характеризуются повышенными служебными характеристиками. В большем или меньшем объёме применяются все схемы термомеханич. упрочнения, приведённые на рисунке. Выбор схемы проводится с учётом природы и назначения металлич. сплава и конкретного изделия. Эффективность конкретного способа термомеханич. упрочнения оценивается по комплексу механич. свойств. В инженерном смысле под повышением прочности понимают повышение сопротивления деформации и сопротивления разрушению в различных напряжённых состояниях, в т. ч. и таком, к-рое может вызвать образование хрупкой трещины и преждевременное разрушение. Поэтому наряду с традиц. испытаниями на растяжение, удар, усталость совр. высокопрочные, в т. ч. термомеханически упрочнённые, стали должны оцениваться по критериям механики разрушения, с определением энергоёмкости процесса развития трещины и др. аналогичных параметров.

Понимание физ. сущности упрочнения в результате ТМО оказалось возможным лишь после того, как стали проясняться осн. закономерности структурных изменений при горячей деформации. Старое представление о том, что горячая деформация всегда сопровождается рекристаллизацией, оказалось неверным.

При ТМО проводится немедленное и резкое охлаждение после завершения горячей деформации, и конечная структура упрочнённой стали наследует тонкое строение горячедеформированного аустенита. В зависимости от условий деформирования, определяемых величиной напряжения, темп-рой и скоростью деформации, структура аустенита по окончании горячей деформации сильно различается. Она может отвечать: а ) состоянию горячего наклёпа с неупорядоченным распределением дислокаций, когда при последующей закалке прочность повышается и одновременно снижается сопротивление хрупкому разрушению; б ) формированию субструктуры в результате динамич. возврата и особенно чёткого и устойчивого субзёренного строения в результате динамич. полигонизации - закалка в этом случае приведёт к оптим. сочетанию высоких значений прочности и сопротивления хрупкому разрушению; в ) состоянию динамич. рекристаллизации, когда в одних объёмах еще сохранена повышенная плотность дислокаций, а в других она резко понижена - закалка в этом случае может привести к получению комплекса повышенных механич. свойств, однако значения их в связи с неоднородностью и нестабильностью тонкого строения будут неустойчивы. Следовательно, режимы горячей деформации металлич. сплавов при осуществлении ТМО необходимо выбирать с таким расчётом, чтобы получить развитую и устойчивую субструктуру в результате динамич. полигонизации. При последующей закалке благодаря сдвиговому характеру мартеиситного превращения субструктура деформированного аустенита, сформированная на стадии динамич. полигонизации, наследуется образующимся мартенситом. Если, напр., осуществляется др. схема ТМО, а именно ВТМизО (рис. ), то благодаря сдвиговому характеру превращения при образовании бейнита последний также наследует субструктуру горячедеформированного аустенита. Во всех случаях присутствие в конечных фазах (мартенсите и др .) этой устойчивой субструктуры определяет высокую дисперсность и мозаичность этих фаз, а также тонкое распределение примесей в них - это и приводит к повышению всех механич. свойств, характеризуемому одновременным возрастанием сопротивления пластич. деформации и сопротивления разрушению. Это наблюдается не только при " прямой" ТМО, но и при последующей после ТМО термич. обработке. Открытое в СССР и широко используемое в отечественной и зарубежной практике явление " наследования" термомеханич. упрочнения базируется на том, что созданная при горячей деформации совершенная и устойчивая субструктура оказывается устойчивой при последующей перекристаллизации. В условиях повторной термич. обработки после ТМО перекристаллизация протекает по сдвиговому механизму, что определяет сохранение субструктуры и, следовательно, комплекса высоких механич. свойств, созданного при " прямой" ТМО. Развитие идей " наследования термомеханич. упрочнения позволило создать новую схему -предварительную термомеханич. обработку (ПТМО), нашедшую применение в СССР и США, а также объяснить высокий уровень свойств в результате патентирования, являющегося, по существу, разновидностью ТМО.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.