Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Химическая и электрохимическая К. 8 страница






В США такие аппараты наз. лунными зондами, марсианскими зондами и т. п. Космическими станциями часто наз. зонды для исследования периферийных областей околоземного космич. пространства и межпланетного пространства(напр., амер. спутники IMP, советские К. з., входившие в системы «Электрон»). Типичными К. з. являются космические аппараты серии «Зонд» (СССР) и аппараты серии «Пионер» (США). Они предназначались для исследования околоземного и межпланетного пространства; аппараты серии «Зонд», начиная с «Зонда-3», доставили много ценных сведений для изучения Луны и её окрестностей (см. также «Луна»).

Науч. измерения на К. з. осуществляются либо при помощи бортовой аппаратуры (измерения потоков частиц, магнитного поля и т. д.), либо путём фотографич. исследований и дистанц. измерений. Полученные в эксперименте результаты обычно передаются по телеметрич. или телевизионным каналам (напр., эксперименты с «Луной-3», аппаратами серии «Венера» и др.) или доставляются на Землю в возвращаемом аппарате (напр., нек-рые из аппаратов серии «Зонд», «Луна-16»).

На межпланетные трассы К. з. выводятся обычно с промежуточной орбиты ИСЗ. Посадка их на др. небесные тела осуществляется обычно также с промежуточной орбиты искусственного спутника. При возвращении на Землю (напр., нек-рых аппаратов серии «Зонд») практикуется вход аппаратов в атмосферу непосредственно со второй космической скоростью. Параметры траектории К. з. определяются с помощью системы радиотехнич. наблюдений. Иногда для этой цели используются фотографич. наблюдения комет искусственных (напр., при запуске «Луны-1» и «Луны-2»).

С помощью К. з. получены первые экспериментальные данные о периферийных областях околоземного космич. пространства. Обнаружена и детально исследована магнитосфера Земли. Открыт («Луна-1», «Луна-2») солнечный ветер - непрерывный поток частиц, излучаемых Солнцем в спокойных условиях, и выбросы частиц, характерных для повышений активности Солнца. Наряду с исследованием этих потоков были изучены и «вмороженные» в них магнитные поля, а также взаимодействие потоков солнечного ветра с магнитосферой Земли, что имеет большое значение для изучения динамики магнитных бурь, возникновения полярных сияний и др. геофизич. явлений, обусловленных солнечно-земными связями.

К. з., запущенные к Венере и Марсу, позволили получить экспериментальные данные о ближайших окрестностях и атмосферах этих планет; с помощью К. з. получены фотографии поверхности Луны и Марса, изучены физ. характеристики лунного грунта. Последние исследования осуществлялись как непосредственно на Луне, так и на образцах лунного грунта, доставленных на Землю.

Существует междунар. система регистрации и обозначения К. з. (см. в ст. Искусственные спутники Земли). В нац. программах космич. исследований сериям К. з. часто даются собственные названия: серии «Луна», «Зонд», «Ма-ринер» и т. п.

Лит.: Dictionary of technical terms for aerospace use, Wash., 1965. М.Г. Крошки.

" КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ", научный журнал Академии наук СССР, издаваемый в Москве. Осн. в авг, 1963 на базе непериодич. сборника «Искусственные спутники Земли» (всего 17 выпусков); периодичность 6 номеров в год. В «К. и.» публикуются оригинальные исследования по динамике полёта космич. аппаратов, результаты исследований в области космической физики и астрономии, в т. ч. теоретич. работы, описания приборов для космич. исследований и конструкций космич. аппаратов, исследования в области космич. биологии и медицины. Публикуются также обзоры по осн. проблемам космических исследований и хроника. Тираж (1971) около 1700 экз. «К. и.» на английском языке издаются в США.

КОСМИЧЕСКИЕ ЛУЧИ, поток частиц высокой энергии, преим. протонов, приходящих на Землю из мирового пространства (первичное излучение), а также рождённое ими в атмосфере Земли в результате взаимодействия с атомными ядрами вторичное излучение, в котором встречаются практически все известные элементарные частицы.

К. л.- уникальный природный источник частиц высоких и сверхвысоких энергий, позволяющих изучать процессы превращения элементарных частиц и их структуру. Наряду с этим К. л. дают возможность обнаруживать и изучать ас-трофизич. процессы большого масштаба, связанные с ускорением и распространением частиц космич. излучения в межпланетной, межзвёздной, а возможно, и в межгалактич. среде.

Большинство частиц первичного космич. излучения имеет энергию больше 109 эв (1 Гэв), а энергия отд. частиц достигает 1020 - 1021 эв (а может быть, и выше). До создания мощных ускорителей заряженных частиц К. л. были единственным источником частиц высоких энергий. В К. л. были впервые обнаружены многие неизвестные ранее элементарные частицы и получены первые данные об их распадах и взаимодействиях с атомными ядрами. Хотя совр. ускорители (в особенности ускорители на встречных пучках) позволяют проводить тщательное изучение процессов взаимодействия частиц вплоть до энергий 1011-1012 эв, К. л. по-прежнему являются единственным источником сведений о взаимодействиях частиц при ещё более высоких энергиях.

Подавляющая часть первичных К. л. приходит к Земле извне Солнечной системы - из окружающего её галактич. пространства (Галактики), т. н. галактические К. л., и лишь небольшая их часть, преим. умеренных энергий (< 1 Гэв), связана с активностью Солнца, т. н. солнечные К. л. Однако в периоды высокой солнечной активности могут происходить кратковременные сильные возрастания потоков солнечных К. л. в межпланетном пространстве. Частицы самых высоких энергий (> 1017эв) имеют, возможно, внегалактическое происхождение (приходят из Метагалактики).

Общий поток энергии, приносимой К. л. на Землю (~0, 01 эрг на 1 см2 в 1 сек), чрезвычайно мал по сравнению с излучаемым на Землю потоком солнечной энергии и сравним с энергией видимого излучения звёзд. Однако не исключено, что в далёком прошлом К. л. сыграли определён-

ную роль в ускорении эволюции жизни на Земле.

В масштабах всей Галактики ср. плотность энергии К. л. велика (~ 1 эв/см3) - порядка плотностей всех др. видов энергии: энергии тяготения (гравитации), магнитных полей, кинетич. энергии движения межзвёздного газа, энергии электромагнитного излучения звёзд. Поэтому К. л. могут оказывать заметное влияние на эволюцию Галактики в целом.

В физике К. л. чётко выделяются 2 осн. направления исследований: ядерно-физическое (взаимодействие К. л. с веществом; генерация, свойства и взаимодействия элементарных частиц) и к о с-мофизическое (состав и энергетич. спектр первичных К. л.; генерация и распространение солнечных и галактич. К. л.; изменение во времени интенсивности К. л. и взаимодействие К. л. с магнитосферой Земли, с солнечным ветром и ударными волнами в межпланетном пространстве и др.). По мере развития техники ускорителей область исследований на первом направлении постепенно сдвигается в сторону высоких энергий. Всё более глубокое изучение ближнего космоса прямыми методами с помощью спутников и космич. ракет перемещает центр тяжести второго направления на более далёкие космич. объекты. Поэтому науч. результаты, получаемые с помощью К. л., носят, как правило, разведывательный, первооткры-вательский, характер и имеют фундаментальное значение как для развития физики микромира (в области характерных размеров < 10-13 см), так и для развития физики космоса (108-1028 см).

Открытие и основные этапы исследования К. л. Существование К. л. было установлено в 1912 В. Гессом по производимой ими ионизации молекул воздуха; возрастание ионизации с высотой доказывало их внеземное происхождение. Наблюдения следов частиц К. л. в Вильсона камере, помещённой в поле лабораторного магнита (Д. В. Скобельцын, 1927), и отклонения их в магнитном поле Землч с помощью газоразрядных счётчиков, поднимаемых в стратосферу на баллонах (С. Н. Верное и Р. Милликен, 1935-37), доказали, что первичные К. л. представляют собой поток заряженных частиц, в основном протонов (ядер атомов водорода). При этом были измерены и энергии большей части К. л. (до 15 Гэв). С помощью ядерных фотографических эмульсий, поднятых на высоту ~ 30 км (Б Питере и др., 1948), в составе первичных К. л. были обнаружены следы ядер более тяжёлых элементов, чем водород, вплоть до ядер железа (рис. 1).

Детальное изучение зарядов и масс частиц вторичных К. л. привело к открытию многих новых элементарных частиц, в частности позитрона, мюона, пи-мезона, К-мезона, А-гиперона (1932-49). В 1932 П. Блэкетт и Дж. Оккиалини впервые обнаружили в камере Вильсона группы близких по направлению генетически связанных частиц космич. излучения - т. н. ливни. В опытах 1945-49 на высокогорных станциях К. л. (В. И. Векслер, Н. А. Добротин и др.) и в стратосфере (С. Н. Вернов и др.) было установлено, что вторичное космич, излучение образуется в результате взаимодействия первичных К. л. с ядрами атомов воздуха. Позднее Г. Т. Зацепин показал, что тот же механизм, но при более высоких энергиях (> 1014 эв) объясняет развитие открытых ранее в К. л. (П. Оже, 1938) широких атм. ливней - потоков из многих миллионов частиц, покрывающих на уровне моря площади порядка 1 км2 и более.

Для правильного подхода к проблеме происхождения К. л. большую роль сыграли успехи радиоастрономии. Связанное с К. л. нетепловое космич. радиоизлучение позволило обнаружить их возможные источники. В 1955 В. Л. Гинзбург и И. С. Шкловский на основе радио-астрономич. наблюдений и энергетич. оценок впервые количественно обосновали гипотезу о сверхновых звёздах как одном из основных галактич. источников К. л.

Базой для космофизического направления исследований явилась созданная в 50 - 60-е гг. обширная мировая сеть станций К. л. (св. 150), на к-рых проводится непрерывная регистрация космич.

излучения. Многие станции находятся высоко в горах, на нек-рых станциях проводятся подземные наблюдения, регулярно посылаются в стратосферу баллоны с приборами автоматич. регистрации К. л.

Новые возможности прямого изучения первичных К. л. в очень широком диапазоне энергий открылись в связи с подъёмом регистрирующей аппаратуры на искусств, спутниках Земли и межпланетных автоматич. станциях. В частности, с помощью калориметра ионизационного на спутниках серии " Протон" был впервые непосредственно измерен энергетич. спектр первичных К.л. до энергии ~ 1015эв (сов. физик Н. Л. Григоров и др., 1965 - 1969). Позднее с помощью искусств, спутников Луны и Марса, а также на советском " Луноходе-1" (1970-71) были проведены длит, измерения вариаций состава и интенсивности К. л. за пределами магнитосферы Земли.

Первичные галактические К. л. Геомагнитные эффекты. Все экспериментальные данные согласуются с тем, что поток первичных К. л., летящих к Земле из Галактики, с высокой степенью точности (~0, 1%) изотропен, т. е. не зависит от направления. Попадая в магнитное поле Земли, заряженные частицы космич. излучения отклоняются от первоначального направления (в результате действия на них Лоренца силы). Поэтому интенсивность К. л. и их энергетич. спектр в околоземном пространстве зависят как от геомагнитных координат места наблюдения, так и от направления прихода К. л. Отклоняющее действие геомагнитного поля проявляется тем сильнее, чем больше угол [ris] между направлением движения частицы и направлением силовой линии поля, т. е. чем меньше геомагнитная широта ф места наблюдения. Т.о., при одной и той же энергии частиц отклонение максимально в экваториальных областях и минимально вблизи магнитных полюсов. У экватора этот " геомагнитный барьер" не пропускает к Земле летящие перпендикулярно её поверхности протоны с энергией меньше ~ 15 Гэв и ядра с энергией ~7, 5 Гэв на нуклон (протон или нейтрон). С увеличением геомагнитной широты пороговая энергия частиц быстро уменьшается [ris], и в полярных областях геомагнитный барьер практически отсутствует. Наряду с регулярной широтной зависимостью на интенсивности К. л. заметно сказываются аномалии геомагнитного поля (особенно в р-не Южной Атлантики). В результате распределение интенсивности К. л. по земному шару имеет довольно сложный характер (рис. 2). В полярных областях [ris] интенсивность К. л. у границы атмосферы составляет в годы минимума солнечной активности ок. 0, 4 частицы на 1 см2 в 1 сек в единице телесного угла.

С ростом энергии К. л. их интенсивность сначала медленно, а затем всё более резко уменьшается (рис. 3, а). При энергиях 1010 - 1015 эв поток частиц с энергией выше нек-рой заданной энергии [ris] (ин-гегральный спектр) падает по закону [ris] (рис. 3, 6). В области энергий > 1015 эв единств, источником сведений об энергетич. спектре К. л. (рис. 3, в) являются данные по широким атм. ливням (см. ниже); этот спектр уже нельзя представить единым степенным законом, что может объясняться примесью метагалак-тических К. л.

Более 90% частиц первичных К. л. всех энергий составляют протоны, примерно 7%- альфа-частицы и лишь небольшая доля (~ 1 %) приходится на ядра элементов более тяжёлых, чем водород и гелий. Несмотря на это, ядра с Z> 1 несут ок. 50% всей энергии К. л. Уменьшение распространённости с ростом атомного номера элемента в К. л. идёт медленнее, чем для вещества небесных тел во Вселенной вообще. Особенно велико в К. л. содержание ядер лёгких элементов Li, Be, В, естеств распространённость к-рых чрезвычайно мала (< =10~7%). Имеется также избыток тяжёлых ядер (Z> =6). Из этого следует, что в источниках К. л. преобладает ускорение тяжёлых ядер, а более лёгкие ядра возникают за счёт расщепления тяжёлых ядер (фрагментации) при их взаимодействии с межзвёздным веществом, В период 1966-71 с помощью ядерных фотоэмульсий и твердотельных детекторов заряженных частиц в К. л. об-
[ris]

Рис. 2. Карта изокосм - линий равной интенсивности космических лучей - на высотах ~ 200 км, по данным третьего советского корабля-спутника (1960) [сплошная жирная линия - геомагнитный экватор]; прерывистые линии - менее надёжные данные, основанные на малом числе измерений. Интенссивность указана в относительных единицах.

наружены ядра значительно тяжелее железа-вплоть до урана, а возможно и ещё более тяжёлые, причём их потоки падают с ростом Z примерно как Z-7- Z-8. В наиболее изученной области энергий (> 2, 5 Гэв на нуклон) ядерный состав К. л. таков: протоны - ок. 92%, ос-частицы - ок.. 7%, ядра с Z = 3-5 - ок. 0, 1-0, 15%, с Z = 6-9 - ок. 0, 5%, с Z = 10-15 - ок. 0, 1-0, 15%, с Z = 16-25- ок. 0, 04%, с Z = 26 (железо) - 0, 025%, с Z> 30 - ~10-5%. По содержанию в К. л. Li, Be, В, к-рых нет в источниках (эти элементы быстро выгорают в результате протекающих в звёздах термоядерных реакций) и к-рые образуются только в результате фрагментации, было оценено ср. количество вещества, через к-рое проходят К.л. на пути от источников до Земли; оно оказалось равным 3-5 г/см2. Отсюда, если известна ср. плотность вещества в Галактике, можно оценить путь, проходимый К. л. в Галактике, и ср. время жизни К. л. (см. ниже).

В состав первичных К. л. входят также электроны и позитроны (~ 1%) и фотоны высоких энергий - [ris] -кванты (~0, 01% при энергиях > 100 Мэв). Несмотря на незначит. долю в К. л., у-кванты представляют особый интерес, поскольку, не отклоняясь магнитными полями межзвёздного пространства, они позволяют обнаруживать отд. квазиточечные источники К. л. Найдено уже ок. 20 таких источников. Из них наиболее интересен пульсар NP 0532 в Крабовидной туманности, дающий поток гамма-квантов 0, 1-0, 5 на 1 м2 в 1 сек и являющийся одновременно мощным пульсирующим источником рентгеновского излучения. Кроме того, обнаружен диффузный поток [ris] квантов из центра Галактики с интенсивностью ~ 1 частица на 1 м2 в 1 сек в расчёте на единицу телесного угла.

Внутри магнитосферы Земли, на высотах > =1000 км от земной поверхности, помимо потока К. л., присутствуют гораздо более интенсивные потоки протонов и электронов, захваченные геомагнитным полем и образующие радиационный пояс Земли. Происхождение внутр. области радиационного пояса объясняется в основном обратным потоком (альбедо) нейтронов, выбиваемых К. л. из ядер атомов, составляющих атмосферу Земли: нейтроны распадаются на протоны и электроны, к-рые удерживаются в естественной магнитной ловушке магнитосферы. Земли.

Солнечные К. л. Наиболее сильные возрастания интенсивности К. л. в виде нерегулярных кратковременных всплесков связаны с хромосферными вспышками на Солнце. При таких вспышках происходит ускорение заряженных частиц солнечной плазмы электромагнитными полями (по-видимому, у границ солнечных пятен), т. е. генерация солнечных К. л. Предложен, в частности, весьма вероятный механизм ускорения частиц электрич. полями, индуцируемыми при быстром сближении областей солнечной плазмы с противоположно направленными магнитными полями (сов. физик С. И. Сыроватский, 1965).

Потоки солнечных К. л. во время нек-рых хромосферных вспышек в сотни раз превышают потоки галактич. К. л. Так, при рекордном всплеске 23 февр. 1956 наблюдалось 300-кратное возрастание потока К. л. с энергией > 3 Гэв, что могло бы представлять серьёзную угрозу безопасности космич. полётов. Поэтому очень важны систематич. наблюдения хромосферных вспышек, всплесков радио-и рентгеновского излучения и др. проявлений солнечной активности, позволяющие в тесной связи с измерениями интенсивности К. л. прогнозировать радиационную обстановку на трассах космич. полётов.

В среднем вклад солнечных К. л. в общую интенсивность космич. излучения составляет несколько процентов.

Хим. состав солнечных К. л. очень близок к составу солнечной атмосферы. В отличие от галактич. К. л., в них отсутствуют ядра Li, Be, В. Это показывает, что количество вещества, проходимое солнечными К. л., чрезвычайно мало (< 0, 1 г/cм2) и что их гене рация не может происходить в глубине солнечной атмосферы, где плотность вещества слишком велика (вероятнее всего ускорение происходит в верхней хромосфере и нижней короне Солнца).
[ris]
[ris]
[ris]

Рис. 3. Энергетический спектр первичных космических лучей (в логарифмическом масштабе): а - дифференциальный спектр (зависимость интенсивности I от энергии [ris]) в области умеренных энергий для протонов (р) и а-частиц; нанесены также экспериментальные точки; 6- интегральный спектр (для

всех частиц) в области высоких энергий [экспериментальные точки получены на спутниках серии " Протон" (1, 2, 3)]; в - в области

сверхвысоких энергий [пунктирные линии ограничивают экспериментальные значения /].

[ris]

Рис. 4. Схема, иллюстрирующая характер солнечного ветра и структуру регулярного межпланетного магнитного поля (спираль) в области модуляции галактических космических лучей; штриховая окружность - орбита Земли.

Частицы солнечных К. л. по сравнению с галактическими обладают более низкими энергиями (их энергетич. спектр более мягкий). Энергии протонов обычно ограничиваются долями Гэв, и лишь при очень редких мощных хромосферных вспышках генерируются протоны с энергиями до 100 Гэв; нижняя граница энергии регистрируемых электронов солнечных К. л. составляет десятки кэв (т. е. близка к энергии частиц солнечного ветра). Солнечные К. л. малой энергии оказывают существенное воздействие на состояние ионосферы, Земли в высоких широтах, вызывая дополнит, ионизацию её нижних слоев. Это приводит к ослаблению радиоволн, а в нек-рых случаях- к полному прекращению радиосвязи на коротких волнах. Данные о распространении солнечных К. л., их энергетич. спектре и угловой анизотропии позволяют получить информацию о структуре магнитного поля в межпланетном пространстве. Изучение пространственных и временных вариаций (изменений) потоков солнечных К. л. помогает лучше понять такие геофизич. явления, как геомагнитные бури, полярные сияния и пр.

Характер возрастания потока солнечных К. л. на Землю показывает, что в начальный период после вспышки поток существенно анизотропен, причём его максимум направлен под углом примерно 450 к западу от направления на Солнце. Это явилось первым прямым доказательством изогнутости силовых линий межпланетного магнитного поля в виде спиралей Архимеда (см. рис. 4).

Модуляция галактических К. л. солнечным ветром. Среди периодич. временных вариаций интенсивности галак-тич. К. л. гл. роль играют модуляции интенсивности, совпадающие с 11-летним циклом солнечной активности. Эти модуляции связаны с рассеянием и " выметанием" К. л. галактич. происхождения неоднородно намагниченными регулярными потоками плазмы, выбрасываемой из Солнца со скоростями 300-500 км/сек. Такие потоки, получившие назв. солнечного ветра, распространяются далеко за пределы орбиты Земли [на десятки астрономических единиц (а. е.); 1 а. е." и 150 млн. км], постепенно переходя в турбулентное движение плазмы в слое, пограничном с невозмущённым галактич. магнитным полем (рис. 4). Согласно данным о двух последних циклах (1948-59 и 1959-70), интенсивность К. л. вблизи

границы земной атмосферы во время максимума солнечной активности снижается в 2-2, 5 раза по сравнению с величиной, характерной для минимума. На уровне моря, куда частицы малой энергии не доходят, амплитуда 11-летних вариаций К. л. оказывается гораздо меньшей (рис. 5).

Существуют и другие, менее ярко выраженные типы модуляций галактич. К. л., обусловленные различными причинами. Это, в частности, 27-суточные вариации, связанные с периодом вращения Солнца вокруг своей оси, а также солнечно-суточные вариации, связанные с вращением Земли и с анизотропией электромагнитных свойств среды, в к-рой распространяются К. л. Совокупность сведений о модуляционных эффектах приводит большинство исследователей к выводу, что эффективные размеры области модуляции К. л. солнечным ветром составляют 2-5 а. е.
[ris]

Рис. 5. Одиннадцатилетний цикл солнечной активности, характеризуемой числом групп пятен W на Солнце (а), и относительных изменений интенсивности I космических лучей всех энергий, по данным наблюдений высокоширотной станции (б). По оси абсцисс отложены годы.

Происхождение и возраст галактических К. л. Осн. источником К. л. считаются взрывы сверхновых звёзд. При каждом таком взрыве происходит расширение с огромной скоростью оболочки звезды и возникают ударные волны в плазме, приводящие к ускорению заряженных частиц до энергий ~ 1015 эв и выше. Гл. экспериментальным доводом в пользу гипотезы происхождения К. л. от взрывов сверхновых явилось впервые прямое радиоастрономическое наблюдение частично поляризованного радиоизлучения от Крабовидной туманности (1957), возникшей в результате взрыва в 1054 сверхновой, сравнительно близкой к Солнечной системе. Свойства этого излучения таковы, что его следует приписать синхротронному излучению (магнитотормозному излучению) - излучению быстрых электронов в магнитных полях, " вмороженных" в потоки звёздной плазмы, выброшенной при взрыве этой сверхновой. Позднее удалось наблюдать магнитотормозное радиоизлучение и от других, более далёких туманностей, рождённых взрывами сверхновых. Дальнейшие наблюдения показали, что спектр магнитотормозного излучения электронов простирается до оптического, рентгеновского и даже ^-диапазонов, и это связано с очень высокими энергиями электронов (до ~ 1012 эв). Естественно, что наряду с электронами в расширяющихся оболочках сверхновых происходит интенсивное ускорение и тяжёлых заряженных частиц - протонов и ядер (однако вследствие своей большой массы они не испытывают заметных потерь энергии на излучение в магнитных полях). При этом чем тяжелее ядро, тем благоприятнее могут быть начальные условия ускорения (т. н. инжекция): тяжёлые ядра могут находиться в неполностью ионизованном состоянии и поэтому сравнительно слабо отклоняться в магнитных полях, что облегчает их " утечку" за пределы плотной оболочки звезды (в к-рой магнитное поле велико). Если учесть среднюю частоту взрывов сверхновых в Галактике вообще (1 раз в 30-50 лет) и полное энерговыделение в каждом взрыве (1051 - 1032 эрг, или 1063 - 1064 эв) и предположить, что ~1% этой энергии тратится на ускорение заряженных частиц, то можно объяснить как ср. плотность энергии К. л. (-1 эв/см3), так и отсутствие заметных колебаний потока К. л.

Методами радиоастрономии были зарегистрированы и ещё более мощные источники К. л. (точнее, их электронной компоненты), находящиеся далеко за пределами нашей Галактики. Такими источниками являются, в частности, интенсивно излучающие квазизвёздные объекты малой протяжённости - квазары, ядра нек-рых галактик, испытывающие резкое расширение взрывного типа, а также радиогалактики с характерными для них мощными выбросами вещества (сопровождающимися радиоизлучением в масштабе целых галактик).

Ускоренные в галактич. источниках тяжёлые заряженные частицы распространяются затем по сложным траекториям в межзвёздном пространстве, где на них действуют слабые [(3-6)10-6 гс ]нерегулярные и неоднородные магнитные поля облаков межзвёздной плазмы. Заряженные частицы " запутываются" в этих магнитных полях (напряжённость к-рых значительно повышается в областях спиральных рукавов Галактик;, одновременно с увеличением концентрации межзвёздной плазмы). При этом движение К. л. носит характер диффузии, при к-рой частицы с энергиями до 1017-1018 эв могут удерживаться в пределах нашей Галактики в течение десятков млн. лет. Диффузионное движение частиц К. л. обусловливает практически полную изотропию их потока. Лишь при более высоких энергиях радиусы кривизны траекторий частиц (особенно протонов) становятся сравнимыми с размерами галактик и происходит интенсивная " утечка" К. л. в метагалактич. пространство. Несмотря на высокую степень разреженности вещества, длительные странствия частиц в Метагалактике приводят к потерям энергии в новых процессах -фотоядерных реакциях на фоновом электромагнитном излучении (оно наз. реликтовым излучением), оставшемся от ранних стадий расширения некогда горячей Вселенной. Наличие этого процесса сильно снижает вероятность того, что наиболее энергичная часть спектра К. л. обусловлена метагалактич. компонентой.

Принципиально новые возможности экспериментального изучения источников наиболее энергичной части спектра К. л. (вплоть до энергий 1020-1021 эв) открылись после обнаружения уникальных аст-рофизич. объектов - пульсаров. По совр. представлениям, пульсары - это небольшие (~ 10км в диаметре) нейтронные звёзды, возникшие в результате быстрого гравитац. сжатия (коллапса гравитационного) неустойчивых звёзд типа сверхновых. Гравитац. коллапс приводит к колоссальному увеличению плотности вещества звезды (до ядерной плотности и выше), магнитного поля (до 1013 гс) и скорости вращения (до 103 оборотов в сек). Всё это создаёт благоприятные условия для ускорения тяжёлых заряженных частиц до исключительно высоких энергий ~ 1021 эв и электронов до энергий ~ 1012 эв. И действительно, наблюдения показали, что наряду с радиоизлучением пульсары испускают (с тем же периодом) световое, рентгеновское, а иногда и гамма-излучение, к-рые можно объяснить только процессом магнитотормозного излучения очень быстрых электронов. Т. о., синхротронное излучение электронов К. л., обусловленное сильными магнитными полями, локализованными вблизи неустойчивых " горячих" объектов - источников К. л., позволяет решать проблему происхождения К. л. методами наблюдательной астрономии (радиоастрономии, рентгеновской астрономии, гамма-астрономии).

Важную дополнит, информацию об источниках и возрасте К. л. дают исследования ядерного состава К. л. Из небольшого относит, содержания в К. л. ядер Be следует, что радиоактивный изотоп 10Ве (ср. время жизни к-рого ок. 2 млн. лет) успевает практически полностью распасться, откуда получается оценка верхнего предела возраста К. л. 20-50 млн. лет. Примерно того же порядка (10-30 млн. лет) оценки получаются из относительного содержания группы лёгких ядер (Li, Be, В) в целом, а также по ср. времени, к-рое требуется электронам К. л. для диффузного распространения от внутригалактич. источников до границ Галактики. Анализ состава сверхтяжёлой ядерной компоненты (Z > 70) даёт ср. возраст К. л. не более 10 млн. лет.

Ещё один способ проверки различных гипотез происхождения К. л.- измерение интенсивности К. л. в далёком прошлом, в частности в периоды известных вспышек ближайших сверхновых (напр., вспышки в 1054). Существуют два метода, с помощью к-рых можно было бы обнаружить эффекты возрастания интенсивности К. л. в прошлом не только в результате взрыва сравнительно недалёких от Солнечной системы сверхновых звёзд, но и в результате возможных гораздо более мощных взрывных процессов в ядре Галактики. Это радиоуглеродный метод, в к-ром по концентрации изотопа 14С в различных годичных кольцах очень старых деревьев определяют темп накопления в атмосфере 14С, образующегося в результате ядерных реакций под действием К. л., и метеоритный метод, основанный на изучении состава стабильных и радиоактивных изотопов метеоритного вещества, подвергавшегося длительному воздействию К. л. Эти методы свидетельствуют о том, что ср. интенсивность К. л. сравнительно мало отличалась от современной в течение десятков тысяч и миллиарда лет соответственно. Постоянство интенсивности К. л. в течение миллиарда лет делает маловероятной гипотезу о происхождении всех К. л. в процессе взрыва ядра нашей Галактики, к-рый считается ответственным за образование галактич. гало (пока не доказанного прямыми наблюдениями).






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.