Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Нейротрансмиттеры






 

Известно более 70 различных медиаторов, и нет сомнений, что будут открыты еще. Помимо этого, некоторые медиаторы могут связываться более чем с одним типом рецепторных молекул и вызывать при этом различные эффекты. Например, нейротрансмиттер глутамат может активизировать как минимум 16 различных типов рецепторных молекул, позволяя нейронам реагировать различным образом на этот один и тот же нейротрансмиттер (Westbrook, 1994). Некоторые нейротрансмиттеры являются возбуждающими в одних зонах и тормозящими в других, так как в этих процессах участвуют два различных типа рецепторных молекул. В этой главе мы, конечно, не сможем рассказать о всех нейротрансмиттерах, обнаруженных в нервной системе, поэтому подробно остановимся на некоторых из них, оказывающих существенное влияние на поведение.

Ацетилхолин (АЦХ) обнаружен во многих синапсах по всей нервной системе. Вообще, это возбуждающий нейротрансмиттер, но он может быть и тормозящим, в зависимости от того, какой тип молекулы рецептора находится в мембране воспринимающего нейрона. Особенно часто АЦХ встречается в гиппокампе — зоне переднего мозга, играющей ключевую роль в формировании новых следов памяти (Squire, 1987).

Болезнь Альцгеймера (предстарческий склероз мозга. — Прим. перев.) — тяжелое нарушение, часто встречающееся в пожилом возрасте и сопровождающееся нарушениями памяти и других когнитивных функций. Было показано, что при болезни Альцгеймера вырождаются нейроны переднего мозга, производящие АЦХ, и соответственно снижается способность мозга производить АЦХ; чем меньше АЦХ производится передним мозгом, тем обширнее потеря памяти.

АЦХ выделяется также во всех синапсах, образованных между нервными окончаниями и волокнами скелетной мускулатуры. АЦХ подводится к концевым пластинкам — небольшим образованиям, расположенным на клетках мышц. Концевые пластинки покрыты молекулами рецептора, которые при активации их ацетилхолином запускают химическую реакцию между молекулами внутри мышечных клеток, заставляя их сокращаться. Некоторые препараты, влияющие на АЦХ, могут вызывать паралич мышц. Например, яд ботулин, выделяемый некоторыми видами бактерий в плохо закрытых консервах, блокирует выделение АЦХ в нервно-мышечных синапсах и может вызвать смерть от паралича дыхательных мышц. Некоторые нервные газы военного назначения, а также многие пестициды вызывают паралич путем разрушения ферментов, расщепляющих АЦХ после включения нейрона; когда процесс расщепления нарушен, в нервной системе происходит неконтролируемое накопление АЦХ и нормальная синаптическая передача становится невозможной.

Норэпинефрин (НЭ) — это медиатор, продуцируемый многими нейронами ствола мозга. Такие хорошо известные препараты, как кокаин и амфетамины, продлевают действие норэпинефрина путем замедления его обратного захвата. Из-за задержки обратного захвата воспринимающий нейрон активируется дольше, чем и объясняется психостимулирующий эффект этих препаратов. Литий, наоборот, ускоряет обратный захват НЭ, вызывая у человека подавленное настроение. Всякое вещество, повышающее или понижающее уровень НЭ в мозге, соответственно повышает или снижает настроение человека.

Допамин. Химически допамин очень близок к норэпинефрину. Высвобождение допамина в определенных зонах головного мозга вызывает интенсивное ощущение удовольствия, и в настоящий момент проводятся исследования, изучающие роль допамина в развитии пристрастий. Избыток допамина в определенных зонах мозга может вызывать шизофрению, тогда как его недостаток в других зонах может приводить к болезни Паркинсона. Лекарства, используемые для лечения шизофрении, например торазин или клозапин, блокируют рецепторы допамина. В противовес им препарат L-dopa, чаще всего прописываемый страдающим болезнью Паркинсона, увеличивает количество допамина в мозге.

Серотонин. Серотонин принадлежит к той же группе химических препаратов, называемых моноаминами, что и допамин и норэпинефрин. Как и норэпинефрин, серотонин играет важную роль в регулировании настроения. Так, низкий уровень серотонина ассоциируется с ощущением депрессии. Были разработаны специфические антидепрессанты, называемые селективными ингибиторами обратного захвата серотонина (СИОЗС), повышающие уровень серотонина в мозге путем блокирования обратного захвата серотонина пресинаптическими окончаниями нейронов. Прозак, Золофт и Паксил, лекарственные препараты, как правило прописываемые для лечения депрессии, — являются ингибиторами обратного захвата серотонина. Серотонин также играет важную роль в регуляции сна и аппетита, а потому используется также при лечении расстройства питания — булимии. Изменяющий настроение препарат ЛСД оказывает свое воздействие, повышая уровень серотонина в мозге. ЛСД по своему химическому строению похож на медиатор серотонин. влияющий на эмоции. Данные показывают, что ЛСД накапливается в некоторых клетках мозга, где имитирует действие серотонина и тем самым создает повышенную стимуляцию этих клеток.

ГАМК. Еще один широкоизвестный медиатор — гамма-аминомасляная кислота (ГАМК), являющаяся одним из основных тормозных медиаторов в нервной системе. Например, препарат пикротоксин блокирует рецепторы ГАМК и вызывает конвульсии, поскольку из-за недостатка тормозного действия ГАМК контроль за движением мышц становится затрудненным. Некоторые транквилизаторы, основанные на свойстве ГАМК усиливать торможение, применяются для лечения пациентов, страдающих тревожностью.

Глутамат. Возбуждающий медиатор глутамат присутствует в большем количестве нейронов центральной нервной системы, чем любой другой медиатор. Существует как минимум три подтипа глутаматовых рецепторов, и один из них, как полагают, играет роль в научении и памяти. Он называется рецептором НМДА — по названию вещества, применяемого для его обнаружения (N-метил D-аспартат). Больше всего НМДА-рецепторов содержится в нейронах гиппокампа (участка около середины мозга), и есть различные данные, показывающие, что эта зона играет решающую роль в формировании новых следов памяти.

Рецепторы НМДА отличаются от других рецепторов тем, что для их активации нужны последовательные сигналы от двух различных нейронов. Сигнал от первого из них повышает чувствительность клеточной мембраны, в которой находится рецептор НМДА. После повышения чувствительности второй сигнал (глутаминовый медиатор от другого нейрона) сможет активировать этот рецептор. При получении такого сдвоенного сигнала рецептор НМДА пропускает в нейрон очень много ионов кальция. Их приток вызывает долговременное изменение в мембране нейрона, делая ее более чувствительной к первоначальному сигналу, когда тот повторится в следующий раз; это явление называют долговременной потенциацией, или ДП (рис. 2.7).

 

Рис. 2.7. Рецепторы НМДА и долговременная потенциация. На схеме показан возможный механизм влияния рецепторов НМДА на долговременное изменение силы синаптической связи (эффект ДП). Когда первый передающий нейрон высвобождает медиаторы, они активируют не-НМДА рецепторы воспринимающего нейрона (1), которые частично деполяризуют клеточную мембрану (2). Эта частичная деполяризация повышает чувствительность НМДА-рецепторов, так что теперь их могут активировать глутаматовые медиаторы, высвобождаемые вторым передающим нейроном (3). Активация НМДА-рецепторов заставляет открыться связанные с ними кальциевые каналы (4). Ионы кальция поступают в клетку и взаимодействуют с различными ферментами (5), что, как полагают, приводит к перестройке клеточной мембраны (6). В результате перестройки у воспринимающего нейрона повышается чувствительность к медиаторам, высвобождаемым первым нейроном, так что последний со временем сможет сам по себе активировать воспринимающий нейрон; так возникает эффект долговременной потенциации.

 

Такой механизм, в котором два конвергирующих сигнала усиливают синаптическую связь, может объяснить, как отдельные события ассоциируются в памяти. Например, в эксперименте с ассоциативным научением вслед за звуком колокольчика немедленно показывалась пища. Когда собака видит пищу, у нее выделяется слюна. Но при повторяющемся сочетании звука и пищи собака научается выделять слюну только на звук колокольчика: это может указывать на то, что сигнал «колокольчик» и сигнал «пища» конвергировали на синапсах, вызывающих слюноотделение. При достаточно многократном предъявлении пары «колокольчик—еда» эти синаптические связи усиливаются под влиянием ДП, и со временем один только звук колокольчика заставляет собаку выделять слюну. На основе механизма НМДА создана любопытная теория ассоциирования событий в памяти, которая сейчас активно развивается (Malonow, 1994; Zalutsky & Nicoll, 1990).

Исследования нейротрансмиттеров и рецепторов получили широкое практическое применение. Некоторые из сфер их применения описаны в рубрике «На переднем крае психологических исследований» на следующей странице.

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.