Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Подогрев газа на ГРС






При редуцировании газ охлаждается, что способствует гидратообразованию. Гидратообразование является область, расположенная левее равновесных кривых (рис. 9). Если газ не насыщен влагой и парциальное давление водяных паров меньше упругости паров гидрата, то кристаллогидраты образовываться не будут. Для исключения гидратообразования перед дросселированием газ подогревают в теплообменниках. Температура подогрева должна быть такой, чтобы влагосодержание насыщенного газа не опускалось ниже влагосодержания газа, поступающего на ГРС. В этом случае при дрос­селировании влага не будет выпадать из газа. Действительную темпе­ратуру подогрева принимают несколько больше полученной из расчета. Теплообменники устанавливают на ГРС, в качестве теплоносителя ис­пользуют горячую воду. При расчете используют зависимость влагосо­держания насыщенного природного газа от давления и темпера­туры.

Рис. 9. График образования гидратов природных газов в зависимости от температуры и давления

Следует напомнить, что влагосодержание — это количество водяных паров в кг, которое содержится в 1 кг (1 м3) сухого газа. Так как водя­ной пар занимает весь объем смеси, влагосодержание можно определить как отношение плотности водяного пара к плотности сухого газа. Если пар в смеси находится в насыщенном состоянии, то его влагосодержание будет иметь максимальное значение. Если считать, что смесь водяных паров и газа подчиняется законам идеальных газов, тогда количество насыщенных водяных паров в 1 м3 смеси и их парциальное давление пол­ностью определяются температурой и не зависят от давления. В этом случае влагосодержание легко рассчитать по таблицам насыщенного во­дяного пара. Содержание водяных паров в сжатых горючих газах боль­ше рассчитанного, так как поведение смесей водяного пара с природным газом отклоняется от законов идеальных газов и тем больше, чем выше давление смеси, ниже ее температура и больше молекулярная масса газа.

На графике (см. рис. 2) показана зависимость влагосодержания насыщенного природного газа от температуры при различных давлениях. В данном случае влагосодержание приведено к нормальным условиям, т. е. 0º С и 101, 3 кПа. График построен для природного газа. Влагосо­держание, отнесенное к 1 кг сухого газа (Wм), определяется отношением плотности пара ρ п к плотности сухого газа ρ с.г, т. е. Wм=ρ пc. Если влагосодержание отнести к 1 м3 сухого газа, тогда получим следующее соотношение: Wυ =Wмρ cп

Следовательно, влагосодержание Wυ , отнесенное к 1 м3 совпадает с абсолютной влажностью. Пересчет влагосодержания Wυ на нормальные условия W с учетом приведенного выше выражения производят следующим образом:

где ; ρ c , pг, Т и ρ о.c, po, То - соответственно плотность, давление и температура газа, а также плотность, давление и температура при нормальных условиях.

Эту же формулу используют для определения действительного влагосодержания газа по влагосодержанию, отнесенному к объему при 0 °С и 101, 3 кПа, который выбирают по графику (см. рис. 9.2) для задан­ных температуры и давления смеси насыщенного водяного пара и при­родного газа.

Действительно, содержание насыщенных во­дяных паров в природном газе больше величины, подсчитанной в таком предположении, что парогазовая смесь подчиняется законам идеальных газов.

При дросселировании газа его объем увеличивается (газ расширя­ется). На преодоление сил межмолекулярного притяжения необходимо затратить определенную энергию, которая пойдет на увеличение потен­циальной энергии взаимодействия молекул. Частично эта энергия ком­пенсируется за счет уменьшения кинетической энергии теплового движе­ния молекул газа, в результате чего температура газа снижается (поло­жительный эффект Джоуля — Томсона). Снижение температуры при дросселировании [напомним, что этот процесс протекает при постоян­ной энтальпии (i = const)] характеризуют дифференциальным темпера­турным эффектом дросселирования Дi:

Для природного газа в области значений давлений и температур, ко­торые имеют место при его редуцировании на ГРС, среднее значение дифференциального дроссельного эффекта принимают равным: Дi = 5, 5 град/МПа.

Таким образом, при дросселировании газа снижаются не только его давление, но и температура, соответственно изменяется и влагосодержание, насыщающее газ. Возможность выпадения конденсата при дроссе­лировании можно определить графически (см. рис. 2). Для этого оп­ределяют температуру газа для промежуточных значений давления при дросселировании от начального до конечного давления. Температуру от­считывают от температуры газа, поступающего на ГРС, считая, что при снижении давления газа на 1 МПа его температура снижается на 5, 5 °С. По полученным данным на графике зависимости влагосодержания на­сыщенного газа от температуры и давления (см. рис. 2) строят кри­вую изменения состояния газа. Эта кривая дает зависимость влагосодер­жания насыщенного газа от давления и температуры, изменяющихся в процессе дросселирования. Если влагосодержание насыщенного газа, поступившего на ГРС, соответствующее его температуре точки росы, ниже полученной кривой, то газ в процессе дросселирования будет прев­ращаться в ненасыщенный. Если же она будет выше минимума кривой, то из газа будет выпадать влага и образовываться кристаллогидраты. Для исключения гидратообразования газ необходимо подогреть на такую величину Δ t, чтобы кривая влагосодержания насыщенного газа при дросселировании лежала выше влагосодержания насыщенного газа, поступающего на ГРС. Значение Δ t определяют подбором, строя не­сколько кривых дросселирования для различных начальных температур.

Снижение давления газа в узле редуцирования приводит к значительному охлаждению его, особенно при высоких перепадах. Охлаждение газа является причиной образования гидратов и обмерзания регулирующих клапанов, запорной арматуры, контрольно-измерительных приборов и трубопроводов. Это значительно усложняет условия эксплуатации ГРС.

При проектировании и эксплуатации ГРС для выявления условий гидратообразования и обмерзания оборудования необходимо знать температуру газа после регулятора давления, которая определяется по формуле

, (1.5)

где , Р1 W1 - параметры газа до регулятора; , Р2, W2 -параметры газа после регулятора давления; Ср - изобарная теплоёмкость газа, кДж/(кг-К); Di - коэффициент Джоуля-Томсона, град/МПа.

При малых изменениях линейной скорости газа ее влияние, по сравнению с эффектом дросселирования, можно пренебречь и тогда.

, (1.6)

Температура газа, выходящего из ГРС, должна быть не ниже -10°С при подаче газа в подземные газопроводы и не ниже расчётной температуры наружного воздуха для районов строительства при подаче газа наземные газопроводы. За расчётную температуру наружного воздуха следует принимать температуру наиболее холодной пятидневки обеспеченностью 0, 92 по СНиП 2.01.01-82.

Кристаллогидраты образуются при определённых значениях Р и Т в газе, насыщенном влагой. Зоной их образования является область, расположенная левее равновесных кривых. Для исключения гидратообразования при дросселировании газа на ГРС его подогревают в теплообменниках на такую величину , чтобы кривая влагосодержания насыщенного газа при дросселировании не опускалась ниже влагосодержания газа, поступающего на ГРС.

Алгоритм расчёта подогрева газа может быть следующий.

По известным начальным () и конечным (Р2 )давлениям и ряду принятых температур газа 1, i) рассчитываются значения соответствующих конечных температур (T2, i). Задача решается методом подбора. Для построения кривых влагосодержания процесс дросселирования газа от до Р2 разбивают на ряд промежуточных с некоторым принятым шагом ∆ Р, получают промежуточные значения давления . В соответствии с этим рассчитывают промежуточные значения температур газа () для каждого промежуточного значения ,. По ряду значений Pi, Ti строятся кривые влагосодержания для каждой из предварительно принятых начальных температур газа (). За расчётную температуру подогрева газа принимают ту из принятых начальных температур, которой соответствует кривая влагосодержания с минимальным значением абсолютной влажности насыщенного пара большим влажности поступающего на ГРС газа. То есть достаточно иметь даже небольшое превышение (WMИН > WH). Далее производится расчёт теплообменников для подогрева газа.

Необходимая поверхность подогрева теплообменника F, , определяется по формуле: (1.7)

где К - коэффициент теплопередачи, Вт/(м2-К); - средняя логарифмическая разность температур, К; Q - количество тепла, необходимого для подогрева газа

(1.8)

здесь Q0 - расчетный расход газа через теплообменник, м3/с.

Выбирают тип теплообменника, определяют его коэффициент теплопередачи, обычно К = 175÷ 230 Вт/(м2·К); выбирают температуру греющей Тв.г. и охлаждённой воды Tв.о. Затем рассчитывают большую и малую разности температур. При противотоке это определится следующим образом

, (1.9)

где Т' - температура подогретого газа, К; Т - температура подводимого газа, К.

Средняя логарифмическая разность температур определится

(1.10)






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.