Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Радиально-сферическое движение несжимаемой жидкости.






Фильтрационный поток называется радиально-сферическим, «если векторы скорости фильтрации направлены в пространстве по прямым, радиально сходящимся к од­ной точке (или расходящимся от нее).

Благодаря центральной симметрии дав­ление и скорость фильтрации зависят и в этом случае только от одной координаты r, отсчитываемой от центра (рис. 8). При­мером потока, весьма близкого радиально-сферическому, является приток жидко­сти к гидродинамически несовершенной скважине малого диаметра, едва вскрыв­шей непроницаемую горизонтальную кров­лю однородного пласта большой мощности (теоретически бесконечной). Если на забое скважины, представленной в виде полусферы радиуса rс, поддерживается постоянное приведенное давление, , а на достаточно большом расстоянии от скважины, на полусферической поверхности радиуса Rк сохраняется посто­янное давление и фильтрация в однородном пласте проис­ходит по закону Дарси, то объемный дебит скважины опреде­ляется по формуле

(III.17)

Приведенное давление в любой точке пласта определяется по формуле

(III.18)

азакон движения частиц вдоль линии тока от точки с координатой r0 до точки с координатой r описывается уравнением

(III.19)

JOGAP

Принцип суперпозиции.

 

Силы в механике подчиняются принципу суперпозиции (принципу независимости действия сил): Если на материальное тело действуют несколько сил, то результирующую силу можно найти из выражения:

  , (3.3.3)  

Из второго закона Ньютона имеем:

где – ускорение тела, под действием силы Отсюда

  , (3.3.4)  

Если на материальную точку действует несколько сил, то каждая из них сообщает точке такое же ускорение, как если бы других сил не было.
Найдем изменение импульса тела за конечный промежуток времени Δ t = t 2t 1: или

  , (3.3.5)  

т.е., изменение импульса тела равно импульсу силы.

В системе СИ семь основных единиц (см. приложение): метр (м), килограмм (кг), секунда (с), ампер (А), кельвин (К), кандела (кд), единица количества вещества (моль).
Остальные единицы называются производными и получаются из физических законов, связывающих их с основными единицами. Например из второго закона Ньютона производная единица силы получается равной 1 кг·м/с2, что соответствует 1Н.

 

При́ нцип суперпози́ ции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

· Результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

· Любое сложное движение можно разделить на два и более простых.

Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов.

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

· Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.

· Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий.

· Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.

БИЛЕТ

Пласт с одной и несколькими скважинами. Интерференция скважин.

Явление интерференции (взаимодействия) скважин заключается в том, что под влиянием пуска, остановки или изменения режима работы одной группы скважин изменяются дебиты и забойные давления другой группы скважин, эксплуатирующих тот же пласт. Вновь вводимые скважины взаимодействуют с существующими. Это явление взаимодействия и взаимовлияния скважин называется интерференцией.

Назовем точечным стоком (источником) на плоскости точку, поглощающую (выделяющую) жидкость. Сток (источник) можно рассматривать как центр добывающей (нагнетательной) скважины.

Ответ

Уравнение Лапласа.

Дифференциальные уравнения движения сжимаемой и несжимаемой жидкости в пористой среде. Вывод уравнения Лапласа

При выводе дифференциального уравнения движения сжимаемой жидкости исходными уравнениями являются следующие:

закон фильтрации жидкости; в качестве закона фильтрации принимаем линейный закон фильтрации, выражающийся формулами (3.1)

, (3.1)

уравнение неразрывности (3.2)

, (3.2)

уравнение состояния. Для капельной сжимаемой жидкости уравнение состояния может быть представлено в виде (3.3)

, (3.3)

где - плотность жидкости при атмосферном давлении .

Подставляя в уравнение неразрывности (3.2) вместо проекций скорости фильтрации vx, vy и vz их значения из линейного закона, выражающегося формулой (3.1), получим:

, (3.4)

уравнения состояния (3.3) имеем:

, (3.5)

Откуда

,

,

. (3.6)

Подставляя эти значения частных производных , и в уравнение (3.4), получим:

Вводя оператор Лапласа

уравнение (3.7) более кратко можно написать в виде

, (3.8)

Учитывая, что

, (3.9)

уравнение (3.7) можно приближенно представить в виде:

, (3.10)

Уравнение (3.7) или приближенное заменяющее его уравнение (3.10) есть искомое дифференциальное уравнение неустановившегося движения сжимаемой жидкости в пористой среде. Упомянутые уравнения имеют вид «уравнения теплопроводности», интегрирование которого при различных начальных и граничных условиях рассматривается в каждом курсе математической физики.

Решение различных задач о неустановившемся движении однородной сжимаемой жидкости в пористой среде, основанное на интегрировании уравнения (3.7) при различных начальных и граничных условиях, дается в книгах В. Н. Щелкачева, И. А. Чарного и М.Маскета. При установившемся движении сжимаемой жидкости и вместо уравнения (3.7) имеем:

, (3.11)

Уравнение (3.11) называется уравнением Лапласа.

При установившейся и неустановившейся фильтрации несжимаемой жидкости плотность жидкости постоянна следовательно, величина, стоящая в правой части уравнения (3.4), равна нулю. Сокращая левую часть этого уравнения на постоянную и выполнив дифференцирование, получим:

, (3.12)

Таким образом, установившаяся и неустановившаяся фильтрация несжимаемой жидкости описывается уравнением Лапласа (3.12).

 

Ответ

) Упругий режим фильтрации. Влияние сжимаемой жидкости в пласте на ее приток к скважинам

. При разработке нефтегазовых месторождений часто возникают неустановившиеся процессы, связанные с пуском или остановкой скважин, с изменением темпов отбора флюидов из скважин. Характер этих процессов проявляется в перераспределении пластового давления, в изменениях во времени скоростей фильтрации, дебитов скважин и т.д. Особенности данных процессов зависят от упругих свойств пластов и жидкостей, т.е. основная форма пластовой энергии - энергия упругой деформации жидкостей и материала пласта. При этом предполагается, что фильтрационный поток однофазный.

Упругий режим характеризуется двумя особенностями:

* длительные (неустановившиеся) процессы перераспределения давления в пласте;

* изменение упругого запаса жидкости в пласте.

При упругом режиме движение возникает в призабойной зоне в начале эксплуатации скважины за счет использования потенциальной энергии упругой деформации пласта и жидкости и только через некоторое время оно распространяется на более отдалённые области.

При снижении пластового давления объём сжатой жидкости увеличивается, а объём порового пространства сокращается за счет расширения материала пласта. Всё это способствует вытеснению жидкости из пласта в скважину.

В ряде случаев приток жидкости поддерживается за счет напора воды, поступающей извне. Такой режим называется упруго-водонапорным.

Если залежи нефти ограничены либо зонами выклинивания, либо экранами, то режим называется замкнуто-упругим. В начальной стадии разработки такой залежи, до тех пор пока пластовое давление не снизилось ниже давления насыщения, имеет место замкнуто-упругий режим фильтрации.

Если вытеснение жидкости из пласта происходит не под действием преобладающего влияния упругости пласта и жидкости, то упруго-водонапорный режим переходит жестко-водонапорный режим. При этом режиме влияние упругости пласта и жидкости на фильтрационный поток хотя и не прекращается, но заметно не проявляется.

Неустановившиеся процессы протекают тем быстрее, чем больше коэффициент проницаемости пласта k, и тем медленнее, чем больше вязкость жидкости m и коэффициенты объёмной упругости жидкости и пласта.

ОТВЕТ

Дифференциальные уравнения движения газа в пористой среде

 

движения газа в пористой среде была разработана Л.С. Лейбензоном. Он получил дифференциальное уравнение для определения давления в пласте при неустановившемся движении в нем идеального газа. Б.Б.Лапук в работах, посвященных основам разработки месторождений природных газов, показал в частности, что неустановившуюся фильтрацию газа можно рассматривать как изотермическую, так как изменения температуры газа, возникающие при изменении давления, в значительной мере компенсируются теплообменом со скелетом пористой среды.

Для вывода дифференциального уравнения неустановившейся фильтрации идеального газа подставим в уравнение неразрывности (2.2)

выражения (2.1) для компонент скорости фильтрации

и уравнения состояния (плотности) идеального газа (2.14)

.

Считая коэффициенты пористости m0, проницаемости k и вязкости m газа постоянными, из уравнения (2.2) на основании (2.1) и (2.14) получим

. (8.1)

Выражения в скобках в левой части уравнения (8.1) можно представить следующим образом:

,

тогда уравнение (8.1) примет вид

. (8.2)

Выражение в скобках представляет собой оператор Лапласа относительно Р2, поэтому уравнение (8.2) можно кратко записать в виде

. (8.3)

Полученное дифференциальное уравнение (8.3) неустановившейся фильтрации газа называется уравнением Лейбензона и представляет собой нелинейное уравнение параболического типа. Заметим, что оно справедливо для идеального газа при выполнении закона Дарси. Изменением пористости пренебрегают, потому что оно входит в уравнение неразрывности (2.2) в виде произведения (rm), в котором плотность газа изменяется в гораздо большей степени, чем пористость

 

13ответ

Установившееся течение газа.

 

Изучение движения газов с высокими скоростями, достигающими скорости звука, является предметом газовой динамики. Одной из фундаментальных задач последней является исследование течений без учёта сопротивлений и в отсутствие теплообмена (т.е.) адиабатических. В этих условиях уравнение баланса удельной энергии имеет вид

.

Уравнение адиабаты идеального газа представим в виде

.

Будем отмечать в дальнейшем индексом " 0" величины, характеризующие газ, находящийся в покое, или, как говорят в газодинамике, в заторможенном состоянии, подставим в уравнение неразрывности

и после интегрирования

.

При установившемся течении весовой расход газа во всех сечениях по длине газопровода одинаков в течение всего процесса движения.

Следовательно, при установившемся течении

,

что является выражением условия неразрывности при движении газа (и также сжимаемых жидкостей). В трубопроводе постоянного сечения одинаковой по длине трубопровода будет также весовая скорость

.

Изменение в удельном весе (плотности) идеального газа при изменении давления и температуры выражаются законом Клайперона-Менделеева

,

где Т - абсолютная температура газа, R - газовая постоянная.

В технике имеют особое значение изотермическое и адиабатическое течения газа. При изотермическом (Т = const) течении идеального газа зависимость между давлением и плотностью имеет вид

,

при адиабатическом

,

где - показатель адиабаты, cp - удельная теплоёмкость газа при постоянном давлении, cv - удельная теплоёмкость газа при постоянном объёме.

 

 

ОТВЕТ

Уравнение пьезопроводности пласта

Считаем, что течение происходит по закону Дарси. Для вывода

уравнения пьезопроводности используем линеаризованное уравнение

состояния упругой жидкости

r = r0 (1+ b f р- р0)

, и соотношение, описывающее изменение пористости в зависимости от давления, () m = m0 + bc р-р0. (4.9) Из (4.8) и (4.9), при пренебрежении членом, содержащим произве- дение bжbс, имеем следующее дифференциальное уравнение t p t m ¶ ¶ r b ¶ ¶ r * = 0. (4.10) В то же время из общего уравнения фильтрации (2.8) Dj ¶ ¶r = t m. Подставляя в выражение для потенциала dp C k = + ò r m j соотноше- ние для плотности (4.8) и считая μ =const, k=const, после интегрирования данного выражения при пренебрежении членом, содержащим (р-р0) 2, получим с учетом (2.40) p t p = cD ¶ ¶. (4.11) Уравнение вида (4.11) известно под названием уравнения тепло- проводности, а в теории фильтрации называется уравнением пьезопро- водности. По аналогии с уравнением теплопроводности коэффициент æ 85 характеризует быстроту изменения давления в пласте и называется ко- эффициентом пьезопроводности. Само уравнение (4.11) позволяет определить поле давления при нестационарных процессах в пласте с упругим режимом

 

15)ответ

Дебит фонтанирующей скважины

Дебиты фонтанных скважин изменяются в широких пределах как по количеству жидкости, так и по количеству попутного газа. С одной стороны, известны фонтанные скважины, дающие более 1000 м3/сут нефти. С другой стороны, есть фонтанные скважины с дебитом порядка 5 м3/сут. Для обеспечения фонтанировання все скважины оборудуются фонтанными трубами (НКТ), которые спускаются в скважину обычно до забоя и с помощью которых осваиваются фонтанные скважины и вызывают приток в них. При наличии в скважине труб возможны различные промывки, воздействие на забой (кислотные обработки, ГРП и пр.), замена одной жидкости другой, продавка скважины газом, задавка скважины путем закачки тяжелой жидкости (соленого или глинистого раствора) и другие операции, необходимость в которых возникает на разных этапах эксплуатации данной скважины и нефтяного месторождения в целом. Однако для подобных операций существует очень ограниченный по диаметру набор труб. Это трубы следующих условных диаметров: 48, 60, 73, 89 и 102 мм. Однако из этих размеров эксплуатационных труб трубы диаметром 48 и 102 мм почти не употребляются. Наиболее употребительными (примерно 85%) являются трубы диаметром 73 мм. Лишь для фонтанных скважин, имеющих дебит несколько сот метров кубических в сутки, применяются 89 мм трубы. Можно сказать, что выбор диаметра фонтанных труб определяется не дебитом скважины, а удобством и техническими условиями нормальной эксплуатации таких фонтанных скважин. Периодически в скважины приходится спускать различные приборы для исследования, такие как скважинные термометры, манометры и дебитомеры. Возникает необходимость спуска пробоотборников для отбора проб жидкости с самого забоя скважины. Все эти приборы имеют внешний диаметр порядка 40 мм, и для их свободного спуска до забоя, не прекращая при этом работу скважины, необходимо иметь внутренний диаметр труб не менее 73 мм
Фонтанирование скважин обычно происходит на вновь открытых месторождениях нефти, когда запас пластовой энергии велик, т. е. давление на забоях скважин достаточно большое, чтобы преодолеть гидростатическое давление столба жидкости в скважине, противодавление на устье и давление, расходуемое на преодоление трения, связанное с движением этой жидкости. Общим обязательным условием для работы любой фонтанирующей скважины будет следующее основное равенство:, где Рс - давление на забое скважины; Рг, Ртр, Ру - гидростатическое давление столба жидкости в скважине, рассчитанное по вертикали, потери давления на трение в НКТ и противодавление на устье, соответственно. Различают два вида фонтанирования скважин: фонтанирование жидкости, не содержащей пузырьков газа, - артезианское фонтанирование; фонтанирование жидкости, содержащей пузырьки газа, облегчающего фонтанирование, - наиболее распространенный способ фонтанирования.

 

16)ОТВЕТ

Радиальный приток к скважине.

Приток жидкости из пласта к скважине определяется формулой притока:

(

; n– показатель степени фильтрации, для линейной фильтрацииn=1

- пластовое и забойное давление, МПа.

; (2) формула Дюпюи

Где k– коэффициент проницаемости,

h– вскрытая мощность пласта, м

μ – вязкость нефти в пласте,

- радиус контура питания, м

– радиус скважины, м.

При линейной фильтрации

Учитывая формулу (2) - (3) формула Дюпюи для

радиального установившегося притока в скважину однородной жидкости:

Формула справедлива для совершенной скважины, т.е. в которой продуктивный пласт вскрыт ею на полную толщину, а сообщения пласта со стволом скважины производится через открытый забой в условиях плоско-радиальной фильтрации.

В действительности же скважины в большей части гидродинамически несовершенны.

Иногда скважины имеют открытый забой, но вскрывают лишь часть пласта. Такие скважины будут несовершенными по степени вскрытия.

В большинстве случаев скважины вскрывают пласт на всю его мощность, но сообщаются с пластом через ограниченное число перфорационных отверстий в эксплуатационной колонне. Такие скважины называются несовершенными по характеру вскрытия пласта.

Часто встречаются скважины несовершенные и по степени и по характеру вскрытия пласта.

Несовершенство скважин влечет за собой появление дополнительных фильтрационных сопротивлений, возникающих в призабойной зоне у стенок скважины в результате отклонения геометрии течения жидкости от плоскорадиального потока, а так же в результате сгущения линий тока у перфорационных отверстий.

Гидродинамическое несовершенство скважин учитывается введением в формулу (3) дополнительного сопротивления в виде безразмерных коэффициентов:

(4) (5)

- коэффициент не совершенности скважины по степени вскрытия

– коэффициент не совершенности по характеру вскрытия

По формуле (5) можно заранее спроектировать дебит конкретной скважины при известных значениях входящих в неё величин. На практике коэффициент продуктивности скважины определяется на установившихся режимах её работы. Установившимся режимом называется режим работы скважины, когда её последующий измененный дебит или забойное давление будут отличаться не более, чем на 5% в течение заданного периода. Из формулы (3) можно написать:

(6)

Где Q– дебит скважины; k– коэффициент проницаемости пласта,; h– мощность пласта, м;

μ – вязкость жидкости,; - радиус контура питания, м; – радиус скважины, м.

При расчете принимают равным половине расстояния между соседними скважинами и - радиус долота, которым бурилась скважина в зоне продуктивного пласта. Давление определяют путем измерения забойного давления в закрытой скважине, когда давление восстановилось. Забойное давление - давление на забое скважины во время её эксплуатации. Задаваясь различными произвольными значениями и решая уравнение (6) относительно (при ) получаем характер изменения давления вокруг скважины при установившемся в ней притоке.

Эта логарифмическая кривая изменения давления показывает, что в процессе эксплуатации скважины вокруг её образуется как бы воронка депрессии, в пределах которой градиент давления резко возрастает по мере приближения к скважине. Значительная часть общего перепада давления в пласте расходуется в непосредственной близости от скважины: по мере удаления от скважины кривые градиентов давления выполаживаются вследствие резкого уменьшения скоростей фильтрации на далеких расстояниях от скважины.

 

17) ответ

Фильтрация в неоднородных пластах

 





© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.