Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Ядерное топливо




 

Цепная реакция деления ядер сопровождается выделением огромного количества энергии. Так, при делении тяжелого ядра на два осколка освобождается энергия, равная примерно 1,1 МэВ на один нуклон. Расчеты показывают, что 1 кг урана выделяет в миллионы раз больше энергии, чем 1 кг каменного угля. Следовательно, ядерное топливо – чрезвычайно энергоемкий источник энергии. В то же время ядерный топливный цикл – сложнейший технологический процесс (рис. 9.11).

 

В отличие от утлеродосодержащих носителей энергии, применяемых и в то же время и как сырье для химической промышленности, ядерное топливо представляет практический интерес преимущественно для производства электрической и тепловой энергии. Огромные возможности для развития атомной энергетики открываются с созданием реакторов-размножителей на быстрых нейтронах (бридеров), в которых выработка энергии сопровождается производством вторичного горючего – плутония, что позволит кардинально решить проблему обеспечения ядерным топливом. Как показывают оценки, 1 т гранита содержит примерно 3 г урана-238 и 12 г тория-232 (именно они используются в качестве сырья в бридерах). При потреблении энергии 5 . 108 МВт (на два порядка выше, чем сейчас) запаса урана и тория в граните хватит на 109 лет. Первый опытно-промышленный реактор на быстрых нейтронах мощностью до 350 МВт построен в г.Шевченко на берегу Каспийского моря. Он производит электроэнергию и опресняет морскую воду, обеспечивая пресной водой город и прилегающие район нефтедобычи с численностью населения около 150000 человек.

Колоссальной энергией обладает термоядерный синтез. При термоядерном синтезе выделяемая энергия на один нуклон значительно больше, чем в реакции деления тяжелых ядер. При делении ядра урана 238 высвобождается энергия около 0,84 МэВ на один нуклон, а при термоядерном синтезе дейтерия и трития – примерно 3,5 МэВ. Термоядерные реакции дают наибольший выход энергии на единицу массы «горючего», чем любые другие превращения. Например, по энергетической емкости количество дейтерия в стакане простой воды эквивалентно приблизительно 60 л бензина. В этой связи весьма заманчива перспектива осуществления управляемого термоядерного синтеза.

Трудность практической реализации управляемого термоядерного синтеза заключается в том, что он возможен только при очень высокой температуре – 107–108 К. При такой сверхвысокой температуре любое синтезируемое вещество находится в плазменном состоянии, и возникает техническая проблема удержания горячей плазмы в ограниченном объеме.

Впервые искусственная термоядерная реакция осуществлена в СССР в 1953 г., а затем через полгода в США в виде взрыва водородной (термоядерной) бомбы, представляющего неуправляемую реакцию синтеза. Взрывчатое вещество в водородной бомбе представляет собой смесь дейтерия и трития. Запалом в ней служит обычная атомная бомба, при взрыве которой возникает сверхвысокая температура, необходимая для синтеза легких ядер.



Над решением проблемы управляемого термоядерного синтеза усердно работают ученые многих стран в течение нескольких последних десятилетий. Один из путей решения данной проблемы – это удержание горячей плазмы в ограниченном объеме сильными магнитными полями. Для этого создаются сложнейшие в техническом исполнении термоядерные реакторы. Один из первых таких реакторов – Токамак-10– был собран в 1975г. в Институте атомной энергии им. И.В. Курчатова.

Управляемый термоядерный синтез открывает человечеству доступ к неисчерпаемой кладовой ядерной энергии, заключенной в легких элементах. Извлечение энергии возможно из дейтерия, содержащегося в обычной воде. Расчеты показывают, что количество дейтерия в Мировом океане составляет примерно 4·1013 т, что соответствует энергетическому запасу 1017 МВт·год, который можно считать практически неограниченным. Остается только надеяться, что проблема управляемого термоядерного синтеза в недалеком будущем будет успешно решена.

 


mylektsii.ru - Мои Лекции - 2015-2019 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал