Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Изменят ли нанотехнологии






общественно – политическое устройство мира.

Единственным выходом из этой патовой ситуации представляется мир во всём мире, переполненном одинаково смертельным оружием у одинаково опасных государств, которые должны создать мировое правительство.

Вероятность того, что государства пойдут на это — 50 х 50: в эпоху нанотехнологий не будет прежних супердержав, ни у одной из сторон не останется кнутов и пряников.

Более того, MNT перевернёт вверх дном сами государства: убьёт крупные, но породит массу маленьких.

Одним из преимуществ, имеющихся сегодня у граждан больших государств, является то, что они находятся в относительной безопасности. В том смысле, что крупные страны тяжелее уничтожить. Если MNT сделает все государства одинаково сильными, это преимущество испарится.

С появлением невидимого нанооружия уничтожить Землю можно будет гораздо быстрее (иллюстрация julianbaum.co.uk).

Вместо экономических причин для объединения приоритетом станут религиозные, этнические, лингвистические и любые другие, что может кончиться сформированием маленьких, независимых общин для определённых групп людей.

Причём для поддержания мира страны должны будут отделиться друг от друга не только экономически и политически, но и географически, то есть пространственно.

Благие намерения? Ничего не скажешь, не особо радостную картину нарисовал Томас Маккарти. " Всё, во что ты навеки влюблён, уничтожит разом тысячеглавый убийца-дракон. Должен быть повержен он", — как пела группа " Ария".

Нанотехнологии войдут в нашу жизнь через медицину и вооружённые силы, а потом обязательно изменят мир. Вопрос в том, насколько сильно. Прогноз Маккарти не оставил камня на камне.

Есть другие варианты. Мы уже писали о gray goo problem — серой слизи: всё живое на Земле будет разобрано на молекулы, которые затем будут бесконечно копироваться, и толстый слой серой слизи покроет Землю.

Если наноробота научат лечить, то и уничтожению обучить его будет несложно (фото microscopy-uk.org.uk).

Профессор Евгений Абрамян утверждает: в устройстве, предназначенном для разборки промышленных отходов до атомов, произойдёт сбой, и оно начнёт уничтожать полезные вещества биосферы, обеспечивающие жизнь людей.

" Чтобы удержать наше лидерство в области нанотехнологий, необходимо заинтересовать наукой и техникой наших детей, — сообщил в журнале " Wired" директор проекта Albany NanoTech Лемар Хилл (LeMar A. Hill). - Нужно уделять больше внимания образованию общественности и, тем самым, способствовать нанотехнологиям. Мы не должны их бояться".

Не пора ли учёным остановиться с этими нанотехнологиями? Может, стоит поддержать движение против нанотехнологий? Или зря народ паникует?

IV. Заключение. Что нас ждёт в будущем.

С наступлением нового тысячелетия начинается эра нанотехнологии. Стремительное развитие компьютерной техники, с одной стороны, будет стимулировать исследования в области нанотехнологий, с другой стороны, облегчит конструирование наномашин. Таким образом, молекулярная нанотехнология будет быстро развиваться уже в начале следующего века.

Если человечество одумается и не будет создавать нанотехнологического оружия, то у него есть реальный шанс выжить. Причём, его ждёт, если не безоблачное, то довольно светлое будущее в комфортном мире без экологических проблем. Жизнь на выживание превратится в приятную жизнь. Но не следует думать, что при этом исчезнут все извечные философские проблемы.

Зачем жить? Сколько жить? Во что переделывать себя? – эти вопросы будут волновать людей в преображённом мире.

На пути развития человечества стоит камень - указатель с надписью: “Молекулярные нанотехнологии. Налево пойдёшь – погибнешь. Прямо пойдёшь – богатство найдёшь. Направо пойдёшь – всё найдёшь, но себя потеряешь.” Дороги расходятся в разные стороны. Нужно выбирать. Дороги эти: гонка нанотехнологических вооружений; использование нанотехнологий лишь для проведения исследований и производства благ; радикальная перестройка человека, общества и всего окружающего мира. Причём именно сейчас ответвляется дорога создания нанотехнологического оружия. Не хочется сворачивать на неё.

Хочется закончить на оптимистической ноте и привести цитату из “Далёкой Радуги” братьев Стругацких: «Не надо огорчаться и заламывать руки. Жизнь прекрасна. Между прочим, именно потому, что нет конца противоречиям и новым поворотам. А что касается неизбежных неприятностей, то я очень люблю Куприна, и у него есть один герой, человек, вконец спившийся водкой и несчастный. Я помню наизусть, что он там говорит. - Он откашлялся. - " Если я попаду под поезд, и мне перережут живот, и мои внутренности смешаются с песком и намотаются на колеса, и если в этот последний миг меня спросят: " Ну что, и теперь жизнь прекрасна? " - Я скажу с благодарным восторгом: " Ах, как она прекрасна! "»

Литература.

1. Физика словарь-справочник; Е.Платунов, В.Самолетов, С.Буравой; 2005г.

2. Научно-познавательный сайт в сети Internet Nanotechnology News Network; www.nanonewsnet.ru

3. Научный сайт в сети Internet Membrana, раздел сложно о простом; www.membrana.ru/articles/simply

4. Нанотехнология для всех. Большое в малом; Мария Рыбалкина; 2005 г.

5. Физика для всех; Л.Д.Ландау, А.И.Китайгородский; 1974 г.

 

Радиоактивность и радиация

 

1. Что такое радиоактивность и радиация?
Явление радиоактивности было открыто в 1896 году французским ученым Анри Беккерелем. В настоящее время оно широко используется в науке, технике, медицине, промышленности. Радиактивные элементы естественного происхождения присутствуют повсюду в окружающей человека среде. В больших объемах образуются искусственные радионуклиды, главным образом в качестве побочного продукта на предприятиях оборонной промышленности и атомной энергетики. Попадая в окружающую среду, они оказывают воздействия на живые организмы, в чем и заключается их опасность. Для правильной оценки этой опасности необходимо четкое представление о масштабах загрязнения окружающей среды, о выгодах, которые приносят производства, основным или побочным продуктом которых являются радионуклиды, и потерях, связанных с отказом от этих производств, о реальных механизмах действия радиации, последствиях и существующих мерах защиты. Радиоактивность - неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения или радиацией. Радиация, или ионизирующее излучение - это частицы и гамма-кванты, энергия которых достаточно велика, чтобы при воздействии на вещество создавать ионы разных знаков. Радиацию нельзя вызвать с помощью химических реакций

2. Какая бывает радиация?

Различают несколько видов радиации.
Альфа-частицы: относительно тяжелые, положительно заряженные частицы, представляющие собой ядра гелия.
Бета-частицы - это просто электроны.
Гамма-излучение имеет ту же электромагнитную природу, что и видимый свет, однако обладает гораздо большей проникающей способностью.
Нейтроны - электрически нейтральные частицы, возникают главным образом непосредственно вблизи работающего атомного реактора, куда доступ, естественно, регламентирован. Рентгеновское излучение подобно гамма-излучению, но имеет меньшую энергию. Кстати, наше Солнце - один из естественных источников рентгеновского излучения, но земная атмосфера обеспечивает от него надежную защиту. Заряженные частицы очень сильно взаимодействуют с веществом, поэтому, с одной стороны, даже одна альфа-частица при попадании в живой организм может уничтожить или повредить очень много клеток, но, с другой стороны, по той же причине, достаточной защитой от альфа- и бета-излучения является любой, даже очень тонкий слой твердого или жидкого вещества - например, обычная одежда (если, конечно, источник излучения находится снаружи). Следует различать радиоактивность и радиацию. Источники радиации - радиоактивные вещества или ядерно-технические установки (реакторы, ускорители, рентгеновское оборудование и т.п.) – могут существовать значительное время, а радиация существует лишь до момента своего поглощения в каком-либо веществе.
3. К чему может привести воздействие радиации на человека?
Воздействие радиации на человека называют облучением. Основу этого воздействия составляет передача энергии радиации клеткам организма.
Облучение может вызвать нарушения обмена веществ, инфекционные осложнения, лейкоз и злокачественные опухоли, лучевое бесплодие, лучевую катаракту, лучевой ожог, лучевую болезнь. Последствия облучения сильнее сказываются на делящихся клетках, и поэтому для детей облучение гораздо опаснее, чем для взрослых Следует помнить, что гораздо больший РЕАЛЬНЫЙ ущерб здоровью людей приносят выбросы предприятий химической и сталелитейной промышленности, не говоря уже о том, что науке пока неизвестен механизм злокачественного перерождения тканей от внешних воздействий.
4. Как радиация может попасть в организм?
Организм человека реагирует на радиацию, а не на ее источник.
Те источники радиации, которыми являются радиоактивные вещества, могут проникать в организм с пищей и водой (через кишечник), через легкие (при дыхании) и, в незначительной степени, через кожу, а также при медицинской радиоизотопной диагностике. В этом случае говорят о внутреннем облучении. Кроме того, человек может подвергнуться внешнему облучению от источника радиации, который находится вне его тела. Внутреннее облучение значительно опаснее внешнего.

5. Передается ли радиация как болезнь?

Радиацию создают радиоактивные вещества или специально сконструированное оборудование. Сама же радиация, воздействуя на организм, не образует в нем радиоактивных веществ, и не превращает его в новый источник радиации. Таким образом, человек не становится радиоактивным после рентгеновского или флюорографического обследования. Кстати, и рентгеновский снимок (пленка) также не несет в себе радиоактивности.Исключением является ситуация, при которой в организм намеренно вводятся радиоактивные препараты (например, при радиоизотопном обследовании щитовидной железы), и человек на небольшое время становится источником радиации. Однако препараты такого рода специально выбираются так, чтобы быстро терять свою радиоактивность за счет распада, и интенсивность радиации быстро спадает.

6. В каких единицах измеряется радиоактивность?

Мерой радиоактивности служит активность. Измеряется в Беккерелях (Бк), что соответствует 1 распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или объема (Бк/куб.м).
Также встречается еще такая единица активности, как Кюри (Ки). Это - огромная величина: 1 Ки = 37000000000 Бк.
Активность радиоактивного источника характеризует его мощность. Так, в источнике активностью 1 Кюри происходит 37000000000 распадов в секунду. Как было сказано выше, при этих распадах источник испускает ионизирующее излучения. Мерой ионизационного воздействия этого излучения на вещество является экспозиционная доза. Часто измеряется в Рентгенах (Р). Поскольку 1 Рентген - довольно большая величина, на практике удобнее пользоваться миллионной (мкР) или тысячной (мР) долями Рентгена. Действие распространенных бытовых дозиметров основано на измерении ионизации за определенное время, то есть мощности экспозиционной дозы. Единица измерения мощности экспозиционной дозы - микроРентген/час. Мощность дозы, умноженная на время, называется дозой. Мощность дозы и доза соотносятся так же как скорость автомобиля и пройденное этим автомобилем расстояние (путь). Для оценки воздействия на организм человека используются понятия эквивалентная доза и мощность эквивалентной дозы. Измеряются, соответственно, в Зивертах (Зв) и Зивертах/час. В быту можно считать, что 1 Зиверт = 100 Рентген. Необходимо указывать на какой орган, часть или все тело пришлась данная доза. Можно показать, что упомянутый выше точечный источник активностью 1 Кюри (для определенности рассматриваем источник цезий-137) на расстоянии 1 метр от себя создает мощность экспозиционной дозы приблизительно 0, 3 Рентгена/час, а на расстоянии 10 метров - приблизительно 0, 003 Рентгена/час. Уменьшение мощности дозы с увеличением расстояния от источника происходит всегда и обусловлено законами распространения излучения.

7. Что такое изотопы?

В таблице Менделеева более 100 химических элементов. Почти каждый из них представлен смесью стабильных и радиоактивных атомов, которые называют изотопами данного элемента. Известно около 2000 изотопов, из которых около 300 - стабильные. Например, у первого элемента таблицы Менделеева - водорода - существуют следующие изотопы:
- водород Н-1 (стабильный), - дейтерий Н-2 (стабильный), - тритий Н-3 (радиоактивный, период полураспада 12 лет). Радиоактивные изотопы обычно называют радионуклидами

8. Что такое период полураспада?

Число радиоактивных ядер одного типа постоянно уменьшается во времени благодаря их распаду. Скорость распада принято характеризовать периодом полураспада: это время, за которое число радиоактивных ядер определенного типа уменьшится в 2 раза. Абсолютно ошибочной является следующая трактовка понятия " период полураспада": " если радиоактивное вещество имеет период полураспада 1 час, это значит, что через 1 час распадется его первая половина, а еще через 1 час - вторая половина, и это вещество полностью исчезнет (распадется)". Для радионуклида с периодом полураспада 1 час это означает, что через 1 час его количество станет меньше первоначального в 2 раза, через 2 часа - в 4, через 3 часа - в 8 раз и т.д., но полностью не исчезнет никогда. В такой же пропорции будет уменьшается и радиация, излучаемая этим веществом. Поэтому можно прогнозировать радиационную обстановку на будущее, если знать, какие и в каком количестве радиоактивные вещества создают радиацию в данном месте в данный момент времени. У каждого радионуклида - свой период полураспада, он может составлять как доли секунды, так и миллиарды лет. Важно, что период полураспада данного радионуклида постоянен, и изменить его невозможно. Образующиеся при радиоактивном распаде ядра, в свою очередь, также могут быть радиоактивными. Так, например, радиоактивный радон-222 обязан своим происхождением радиоактивному урану-238. Иногда встречаются утверждения, что радиоактивные отходы в хранилищах полностью распадутся за 300 лет. Это не так. Просто это время составит примерно 10 периодов полураспада цезия-137, одного из самых распространенных техногенных радионуклидов, и за 300 лет его радиоактивность в отходах снизится почти в 1000 раз, но, к сожалению, не исчезнет.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.