Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






И резин с активным техуглеродом (II) на основе каучуков общего назначения






Показатели НК СКИ-3 СКД БСК
I II I II I II I II
Напр.при.удл.300%, МП а 2-3 12-14 1, 5-3, 0 8-13 1, 0-1, 3 7-11 0, 8-1, 3 10-11
Прочн. при раст., МПа 25-33 25-35 23-35 23-35 2-5 16-19 2-3 19-25
Относит. удлинение, % 800-850 600-850 700-950 600-800 250-750 400-600 700-800 550-650
Сопротив. раздиру, кН/м 50-100 130-150 30-90 110-160 5-7 35-45 7-10 70-90
Твердость по ТМ-2 35-40 60-75 30-40 60-70 40-52 57-68 32-43 50-60
Эластичн. по отскоку, % 68-75 40-55 65-75 37-51 65-78 45-50 50-55 35-46
Истираемость, см 3/ кВт-ч - 270-330 - 280-340 - 170-190 - 300-340
Динамич. модуль, МПа 1.6-1.8 5, 5-6, 0 1, 6-1, 8 5, 7-6, 2 1, 8-2, 0 5, 5-7, 0 2, 0-2, 5 5, 4-5, 8
Модуль внутреннего трения, МПа 0, 12-0, 26 1, 8-2, 2 0, 13-0, 26 2, 0-2, 4 0, 25-0, 50 1, 6-1, 8 0, 28-0, 35 2, 2-2, 6
Выносливость, тыс.ц. - 170-180 - 130-160 - 100-130 - 60-85

 

Выбор марки и содержания техуглерода определяется особенностями работы шины, технологией и экономичностью её производства, так как он дешевле каучука. Чем выше дисперсность техуглерода, тем больше растут напряжение при удлинениях и твёрдость резин с повышением его содержания и снижаются эластичность и относительное удлинение; износостойкость больше повышается с ростом структурности техуглерода. В протектор вводят высокодисперсный техуглерод повышенной структурности, но из-за большого теплообразования при многократных деформациях он может привести к саморазогреву шины, поэтому в брекере более подходит менее активный техуглерод П514. В протекторе «зеленых» шин применяют коллоидную кремнекислоту, а взаимодействие каучуков с наполнителями улучшают промоторы, что повышает модули, прочность и износостойкость резин. В смеси с техуглеродом вводят нитрозосоединения (нитрозан К, эластопар, нитрол, N-нитрозодифениламин), а с кремнекислотой - органосиланы.

Вулканизующее вещество для шинных смесей - природная молотая сера высшего сорта, являющаяся продуктом дробления комовой серы с последующим отвеиванием. Ускорители вулканизации улучшают физико-механические свойства резин, а активируют их действие активаторы – чаще оксид цинка, особенно в присутствии стеариновой, пальметиновой, олеиновой кислот и их цинковых солей. В зависимости от температуры критического действия и влияния на скорость вулканизации ускорители подразделяют на ультраускорители (дитиокарбаматы, некоторые тиурамсульфиды), средней (сульфенамиды, тиазолы) и низкой (гуанидины) активности, последние применяют в комбинации с более активными ускорителями. В протекторных резинах применяют сульфенамидные ускорители, чаще N-циклогексил-2-бензтиазолилсульфенамид (сульфенамид Ц) с критической температурой действия 120оС, в количествах 0, 5-1, 5 мас.ч. при содержании 1, 5-3 мас.ч. серы на 100 мас.ч. каучуков. В их присутствии кинетика вулканизации характеризуется наибольшим индукционным периодом пребывания смеси в вязкотекучем состоянии, высокой скоростью сшивания в главном периоде и широком плато (отсутствием реверсии) при температурах до 160 о С. Ускорители других классов активируют вулканизацию с сульфенамидами, но уменьшают индукционный период. Дисульфидные ускорители вулканизации (тиурам), одновременно являются вулканизующими веществами – донорами серы.

Выбор вулканизующей группы определяется типом каучука, условиями переработки смесей в полуфабрикаты и их вулканизации в покрышке. В смесях из БК для ездовых камер применяют серу с тиурамом, а для диафрагм к форматорам-вулканизаторам – смоляную вулканизующую группу. В смесях из других каучуков серу частично заменяют её донорами, сульфенамид комбинируют с тиазолами и тиурамами, а часто добавляют и замедлители подвулканизации, увеличивающие время их нахождения в вязкотекучем состоянии, что предотвращает преждевременное сшивание при переработке. К замедлителям подвулканизации относятся бензойная кислота и другие органические кислоты, фталевый ангидрид, N-нитрозодифениламин и сантогард PVI (N-циклогексилтиофталимид). Эффективность последнего объясняется взаимодействием с меркаптобензтиазолом с образованием ускорителя с большим индукционным периодом - циклогексилдитиобензотиазола.

Армирующие материалы в конструкции пневматической шины – металлический и текстильный корд, стальная проволока и технические ткани (чефер и бязь). Корд представляет собой полотно из тонких, прочных нитей основы и слабых, редких нитей утка (уточный) или нити без утка (безуточный), собираемые в полотно при обработке на шинных заводах. Он составляет 15-38% массы шины и является основным армирующим материалом, определяющим её технический ресурс, ремонтопригодность и другие показатели качества.

Металлокорд занимает лидирующее положение среди армирующих материалов, оставаясь непревзойдённым для брекера радиальных шин, и представляет собой свитый трос из специальной высококачественной стальной латунированной проволоки диаметром 0, 15-0, 27 мм холодного волочения. Применяют сталь состава: углерод-0, 7%; марганец-0, 5%; кремний-0, 3%; сера не более 0, 3% и свинец не более 0, 03%, а одним из перспективных путей увеличения выносливости корда является повышение чистоты металла. Маркировка корда: первые три цифры указывают число свитых проволок, последующие – диаметр использованных проволок (в мм × 100), а буквы Л – латунированный, А - высшей категории качества. Конструкция корда записывается, начиная с сердечника с указанием числа проволок, а при разной их толщине – и толщину. Например, корд 9Л15/27 структуры 3 × 15 + 6 × 27 означает одну прядь из трёх стренг диаметром 0, 15 мм и шесть окружающих её – диаметром 0, 27 мм. Для изготовления металлокорда применяют проволоку диаметром 0, 15 мм; 0, 175 (0, 18) мм; 0, 265 (0, 27) мм и 0, 30 мм. С увеличением толщины металлокорда повышается его прочность и ухудшаются технологические характеристики (становится жёстче)

Работоспособность металлокорда во многом определяется качеством исходного материала – катанки. Снижают её качество наличие микротрещин и высокий уровень неметаллических включений. Прочность металлокорда и её сохранность при эксплуатации повышают за счёт использования проволок с высокой удельной прочностью (НТ), а также их контактного расположения в витой структуре. По мнению ведущих специалистов, в современных конструкциях шин требования к металлокорду для каркаса и брекера должны различаться. При линейном касании проволок повышается интенсивность износа их поверхности, что меньше снижает прочность металлокорда по сравнению с точечным касанием проволок, когда уменьшается площадь поперечного износа в месте контакта. Поэтому для каркаса рекомендуют конструкции: 0, 20 + 18 × 0, 175; 0, 22 + 18 × 0, 20 и 0, 25 + 18 × 0, 22. Металлокорд с высокой прочностью проволок дороже аналогичных конструкций из проволок нормальной прочности из-за пониженных скоростей переработки, кроме конструкций с большим диаметром проволок: 3 × 0, 20 + 6 × 0, 35 и 3 × 0, 365/9 × 0, 34 + 0, 15НТ. Применение металлокорда с высокой прочностью и большим (на 20%) шагом укладки при равной прочности слоёв становится также экономически оправданным.

Качество металлокорда оценивается показателями прямолинейности, нераскручиваемости, выносливости и остаточного кручения. Металлокорд на прямолинейность оценивается по отрезку нити длиной в три метра, который должен лежать в состоянии покоя на плоскости, ограниченной двумя прямыми линиями с расстоянием между ними 75 мм. Показатель улучшается путём снятия внутренних напряжений, влияет на точность расположения нитей в полотне и равномерность распределения нагрузок в шине, и у отечественного металлокорда он хуже по сравнению с зарубежным. Нераскручиваемость влияет на прочность связи металлокорда с резиной и проявляется в том, что после разрыва он не расплетается при однократном надавливании на конец нити. Выносливость металлокорда определяет устойчивость прилагаемых к шине нагрузок «сжатие-растяжение-перегиб» и зависит от геометрии расположения проволок, качества катанки и величины остаточных напряжений в проволоках после свивки. Остаточное кручение характеризуется крутящим моментом находящегося в свободном состоянии металлокорда и определяет его технологические свойства, а большие значения этого показателя приводят к выходу единичных проволок из брекера покрышек и его разрушению.

Недостатки металлокорда - высокая плотность, низкие значения коррозионной стойкости и выносливости при многократных деформациях изгиба. Эксплуатационные свойстваметаллокорда зависят от его адгезионной способности, прочности связи с резиной, на которые в свою очередь влияют условия и срок его хранения. Поэтому за рубежом для контроля условий хранения металлокорда в полиэтиленовую тару помещают, кроме силикагеля-осушителя, видимый через оболочку индикатор влажности.

Текстильный корд в большом ассортименте разных типов и плотностей (количество нитей на 10 см ширины полотна) применяется в конструкции шин различного назначения. Частота нитей корда в слоях диагональной покрышки определяется отношением толщины нити (b) к шагу (t) и равна 0, 7-0, 75 в основных слоях каркаса, 0, 5-0, 6 в последних слоях каркаса и 0, 3-0, 4 в брекере. В основных слоях каркаса применяют плотный корд с 89-95 нитями на 10 см ширины полотна (25А или 28КНТС), в последних слоях – разрежённый с плотностью 72-75 нитей (252А или 282КНТС), а в брекере - редкий корд, обозначенный третьей цифрой 3 в марке (133А, 133КНТС), с плотностью 47-61 нить. Снижение плотности корда позволяет за счёт увеличения резиносодержания от жёсткого каркаса к резиновому протектору повысить прочность связи между слоями покрышки, что обусловлено различиями в деформации слоёв при эксплуатации шины – верхние слои деформируются больше нижних. В технологии шин применяют полиамидный, полианидный, вискозный, полиэфирный и стеклокорд.

Полиамидный корд занимает в технологии шин России одно из ведущих мест и имеет маркировку КНТС, где К обозначает капроновый, Н - изготавливается из непромытого волокна, Т - требующий термовытяжки, С - заправленный стабилизатором (табл.1.12). Анидный корд по свойствам превосходит капроновый, для каркаса однослойных радиальных легковых шин имеет маркировку 13АЛТДУ, где А – анидный, Т – термообработанный, Л – для легковых шин, ДУ – двухкомпонентный уток (х/б + анид). Для каркаса и брекера СКГШ применяют высокопрочный корд марок 30А и 302А. Полиэфирный корд (лавсан) за рубежом применяется при армировании каркаса легковых и грузовых шин небольшого размера. Вискозный корд – это первый корд из искусственных волокон низкой стоимости, высокой теплостойкости и низкой усадки, заменивший хлопчатобумажный, но в последние годы активно заменяется синтетическими кордами - полиамидным и полиэфирным. Недостатки – высокая гигроскопичность, пониженные разрывная прочность и усталостные свойства. Стеклокорд из волокон алюмоборсиликатного стекла, которые обработаны для снижения хрупкости кремнийорганическими соединениями, реагирующими с поверхностью силикатного стекла и полимерным пропиточным составом. По свойствам он близок к металлокорду и позволяет на 10-14% уменьшить массу шины и на 20-30% - её стоимость. С точки зрения повышения качества шин перспективны новые высокомодульные корда из ароматических полиамидов, близкие по деформационным характеристикам к металлокорду, при этом имеют меньшую массу, в пять раз меньшую плотность и не подвержены коррозии.

 

Приемка и складирование. Хранение и дозирование материалов на современных шинных заводах. Транспортные системы для техуглерода, химикатов и жидких материалов. Декристаллизация НК и дозирование каучуков.

Каучуки, большинство ингредиентов и армирующие материалы упакованы в мешки, бочки и контейнеры и поступают на завод по железной дороге или автотранспортом. На современных шинных заводах упакованные грузы с рампы к высотным стеллажным складам подают подвесные толкающие конвейеры (ПТК), а перегружают автоматические краны-штабелеры с вилами одинарной или двойной глубины (рис.2.19). Стеллажные склады имеют высоту 12-15 м (за рубежом - до 35 м) и оборудованы автоматизированной системой управления транспортными средствами для приёмки материалов и выдачи в производство по принципу «первым загружен – первым выгружен». Контролируются масса, номенклатура, упаковка и дата поступления грузов, время их хранения, маршруты приёмки и выдачи, связь с заводской ЭВМ. При этом подготовка и транспортирование каучуков остаётся наиболее трудоёмким процессом.

Дозирование материалов проводят с точностью до 3%, а системы автоматического дозирования применяют на предприятиях с ассортиментом не более 20-25 видов шин и не более 40-50 наименований ингредиентов. Централизованная система дозирования включает общее оборудование для нескольких смесителей на отдельном участке, что позволяет изготовлять много разных смесей с большим числом компонентов. Индивидуальная системадозирования включает бункера и ёмкости с автоматическими весами, дозаторами и транспортирующими механизмами у каждого смесителя для всех поступающих материалов. Применение ее ограничено невозможностью установки около одного смесителя более 20-25 бункеров. Комбинированные полуавтоматические системы дозирования применяют на заводах с большим ассортиментом изделий и позволяют большие навески, например 10-15 кг техуглерода, взвешивать автоматически у смесителя, а малые количества - на централизованных участках. При этом подача к смесителям и загрузка ингредиентов могут не автоматизироваться. Каучуки, регенерат, ускорители вулканизации и сера, трудно поддающиеся автоматической развеске, взвешиваются и загружаются оператором.

Металлокорд поступает в виде стандартных шпуль с одиночными нитями в металлических или картонных коробках с влагопоглотителем. Объём входного контроля его качества и свойств резин определяется в каждом конкретном случае. Сплошной контроль качества металлокорда и резиновых смесей применяют при технологических авариях, освоении новой продукции и новых видов сырья, технологических процессов и оборудования, а выборочный и статистический контроль - при стабильном производстве освоенной продукции. Окисление поверхности и влажная коррозия металлокорда снижают его адгезионные свойства, что обуславливает жёсткие требования к его хранению, транспортированию и переработке. При хранении в сухой среде (при относительной влажности менее 40%) его адгезионные свойства не изменяются в течение продолжительного времени, а в условиях повышенной влажности - быстро ухудшаются. Хранить металлокорд необходимо в неповрежденной таре поставщика и в условиях, исключающих конденсацию влаги, что достигается при использовании отапливаемых и вентилируемых хранилищ. Транспортируют металлокорд только упакованным и в крытых транспортных средствах, не допускается попадание атмосферных осадков на его упаковку, а для морского транспорта применяется специальная упаковка.

Пневмотранспортные системы приёмки техуглерода из железнодорожных вагонов-хопперов, подачи в складские бункера и далее в расходные бункера смесителей наиболее герметичны, надёжны в работе, компактны и автоматизированы (рис.2.21). Техуглерод из приёмной ёмкости 1 загружается с помощью винтового питателя 2 в стальной материалопровод 4 и потоком воздуха от вентилятора 3 посредством переключателя трубопроводов 5 направляется к одному из двух пунктов. Распределитель 8 направляет отделившийся в циклоне 7 техуглерод в один из трёх бункеров 6, а распределитель 9 отделившийся в таком же циклоне техуглерод - в один из расходных бункеров 10. Далее из бункеров винтовые дозаторы 11 направляют навески техуглерода через материалопровод в одну из расходных ёмкостей 12, расположенных над резиносмесителями. Система закольцована воздуховодом с всасывающим патрубком вентилятора 3. Снижение скорости перемещения техуглерода струями над постилающим слоем уменьшило разрушение его гранул, а применение на отдельных участках эластичных рукавов или шлангов исключило налипание пыли на его внутренних стенках. Систему продолжают улучшать путём повышения концентрации псевдоожиженного и пробкообразного потоков техуглерода и комбинирования сил воздействия на материал – вибрации, аэрирования, ультразвука и т.д. На ОАО «Омскшина» продолжает работать автоматизированная механическая схема приёмки, по которой техуглерод ссыпают из хоппера с помощью гибкого шланга в ёмкость и перемещают в горизонтальном и вертикальном направлениях с помощью системы винтовых конвейеров и ковшовых элеваторов соответственно.

Транспортирование химикатов начинают с растаривания, пересыпания в контейнеры массой около 0, 5 т и подачи их с помощью ПТК напрямую в расходные бункера у резиносмесителей или к установкам дозирования централизованного участка, а далее – пневмотранспортом. Бумажные мешки освобождают от химикатов с помощью растарочных машин 1 марки ОКАС-150 с максимальной производительностью 150 мешков/час и прессуют в кипы прессом 4, а материал высыпают в приёмные точки – шлюзовые питатели 2 вместимостью по 5-7 л, (рис.2.22). Отечественная схема пневмотранспорта состоит из семи линий стальных материалопроводов для химикатов больших объёмов потребления: сульфенамида Ц, каптакса, альтакса, продукта 4010NA, неозона Д, диафена ФП и фталевого ангидрида. Оксид цинка, кремнекислоту и каолин подают по отдельной линии с растарочной машиной 3 и загрузочной воронкой 5, а загружают через шлюзовые продуваемые питатели 6 вместимостью по 13 л. С помощью переключателей трубопроводов материалы распределяют по расходным бункерам 9, на которых установлены насадочные фильтры 10 с регенерацией обратной импульсной продувкой воздухом среднего давления. Отработанный воздух отсасывают вентилятором 11, а воздушный поток создают ротационными воздуходувками 12 производительностью 17-20 м 3 /мин. Дальность транспортирования материалов - 340 м, производительность - от 0, 9 т/ч для белой сажи до 1, 2-3 т/ч для остальных химикатов.

Централизованный участок дозирования химикатов насчитывает до двенадцати станций дозирования, связанных с группами из шести бункеров с различными химикатами. Автоматизированная система дозирования фирмы «Нокия» (Финляндия) состоит из десяти передвижных бункеров 2, пяти автоматических узлов дозирования 3, 4 и системы перемещения контейнеров 5 (рис.2.23). Химикаты для одной закладки маточной смеси распределяют не более чем в три полиэтиленовых мешка, а для приготовления готовой смеси – в один мешок. Пакеты с готовыми навесками устанавливают на ленточные конвейеры, перегружают на полки ПТК и далее на ленточный конвейер для загрузки в воронку смесителя. Подвеска ПТК для химикатов оборудована тремя полками, и на каждой находится навеска для одной закладки в смеситель.

Жидкие и легкоплавкие материалы с температурой плавления до 70 о С поступают на завод в бочках, автомобильных и железнодорожных цистернах. Сливают их через нижние штуцеры цистерны 1 в отапливаемом помещении 2 по трубопроводу 6 в складские резервуары-хранилища 7 вместимостью 25-75 м 3 с фильтрами, змеевиками и паровыми рубашками для их подогрева

Автоматическую развеску мягчителей ведут из циркуляционной системы трубопроводов 3, куда их перекачивают циркуляционными насосами 2 по обогреваемым трубопроводам из расходных ёмкостей 1 подготовительного цеха (рис.2.25). Мягчители через автоматические весы 5 направляются в сборные ёмкости 6 и нагнетаются инжектором 8 в рабочую камеру смесителя 7. Автоматическая система подачи, развески и дозирования пяти типов мягчителей установлена на АО «Воронежшина». Пять стальных расходных баков вместимостью по 1.5 м 3 служат резервуарами для систем кольцевых магистралей трубопроводов. Каждый бак имеет уровнемеры для автоматического контроля наполнения. Четыре бака имеют контрольно-измерительные приборы парового обогрева, один бак – обогрева горячей водой. В дополнение к системам кольцевых трубопроводов имеются два плавильных бака твёрдых мягчителей с системой их обогрева паром, к которым они транспортируются на поддонах, а стеарин подают по дополнительному кольцу трубопроводов.

Декристаллизация НК в камерах периодического действия имеет низкую производительность, а высокочастотные установки не дают равномерности нагрева и трудно поддаются управлению. Поэтому кипы НК массой около 112 кг, предварительно разрезанные гидравлическим ножом на 4-5 частей, декристаллизуют в камерах непрерывного действия с цепным конвейером. По рольгангу куски НК скатываются на подвески цепного конвейера, двигающегося со скоростью 0, 7 м/мин, и проходят через распарочную камеру. Воздух внутри камеры нагревается калорифами до 90-100 о С и циркулирует с помощью вентиляторов, а места проёмов для входа и выхода подвесок теплоизолированы воздушными завесами. Полки подвесок посыпаны тальком для предотвращения прилипания каучука, а после выхода из камеры опрокидываются над ленточным транспортером 8, который доставляет каучук на пластикацию.

Дозирование каучуков осуществляют на установке фирмы FATA четырёх модификаций: для одного (ДАК-300/1), двух (ДАК-300/2), трёх (ДАК-300/3) и четырёх (ДАК-300/4) каучуков (рис.2.20). Она состоит из системы приводных конвейеров (1, 5-7), машины 2 для грубой резки брикета и тонкого реза, в котором ленточный нож совершает возвратно-поступательное движение, устройства 3 для зажима брикета и автоматических весов 4. Установка может на централизованном участке автоматически перекладывать комплексную навеску заданной точности на подвеску ПТК для подачи в резиносмеситель, или у смесителей подавать её на загрузочный транспортёр.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.