Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Особенности растворения полимеров. Степень и скорость набухания. Неограниченное и ограниченное набухание. Термодинамическое сродство полимера и растворителя.






Взаимодействие между макромолекулами и молекулами растворителя, называют сольватацией. При наличии сродства между ними происходит самопроизвольное диспергирование друг в друге (растворение), начинающееся с быстрого проникновения в фазу полимера молекул растворителя. Макромолекулы за это время не успевают перейти в фазу растворителя, и полимер набухает, поглощая растворитель. Увеличение массы (Q м) или объема (Q о) полимера в результате набухания его в определенных условиях (форма и размеры образца, продолжительность, температура и др.) называют степенью набухания: Q м =(m н - m о) . 100 / m о %; Q о =(V н - V о) . 100 / V о %. Растворитель быстро проникает по механизму капиллярного всасывания в области рыхлой упаковки макромолекул, раздвигая их (внутриструктурное набухание). Одновременно с заполнением пор, пустот и каналов, растворитель медленно диффундирует в надмолекулярные образования полимера и разрушает их (межструктурное набухание).

Скорость набухания υ зависит от скорости диффузии растворителя в полимер и может оцениваться углом наклона зависимости степени набухания от времени к оси абсцисс или определяться по увеличению массы Δ m (υ м) или степени набухания Δ Q (υ Q) образца полимера за данный отрезок времени Δ τ:

υ м =(m 2 -m 1) /21)=Δ m / Δ τ; υ Q=(Q 2 -Q 1) /21)= Δ Q / Δ τ.

Степень набухания, при которой появляется горизонтальный участок кривой, называется максимальной (Q макс) или равновесной. Полимер набухает значительно медленнее в парах, чем в жидкости, но максимальная степень набухания при этом не изменяется. Скорость проникновения растворителя от поверхности вглубь зависит от степени термодинамического сродства растворителя и полимера, температуры, уровня межмолекулярного взаимодействия в полимере и других условий процесса. В начале процесса набухания концентрация растворителя уменьшается от поверхности к центру, образец сильно деформируется, и в нем возникают внутренние напряжения, вызывающие разрыв наиболее растянутых участков макромолекул с образованием свободных радикалов, способных инициировать реакции деструкции. Интенсивная окислительная деструкция со снижением прочности полимера, усиливающаяся с повышением температуры, наблюдается в том случае, если сам растворитель легко окисляется. Процесс набухания можно представить как одностороннее смешение, а набухший полимер – как две находящиеся в равновесии фазы с поверхностью раздела между ними.

Неограниченное набухание самопроизвольно переходит в растворение, что характерно для линейных аморфных полимеров с невысокой степенью полимеризации. Степень набухания, после которой начинается растворение, должна быть достаточной для полной сольватации макромолекул и их отделения от остальной массы набухающего полимера. Вокруг набухающего образца образуется слой раствора полимера. Диффузия макромолекул постепенно выравнивает их распределение по всему объему растворителя с образованием однофазной гомогенной системы (рис.2.29 а). В точке а скорость растворения становится равной скорости набухания, а в точке в она начинает превышать скорость набухания, и масса образцов уменьшается. Между этими точками образцы имеют максимальную степень набухания Q макс в течение времени Δ τ. Оба показателя уменьшаются со снижением ММ и разветвленности макромолекул и межмолекулярного взаимодействия в полимере. Ограниченное набухание не сопровождается растворением из-за их низкого термодинамического сродства или химического связывания макромолекул в сетчатую структуру (рис.2.29 б). С ростом густоты сетки степень и скорость набухания снижаются. Своеобразный ход кривой 3 объясняется экстракцией из набухающего сетчатого полимера растворимых низкомолекулярных компонентов смеси и их растворением. На участке c-d растворение заканчивается. Степень набухания Q 1 соответствует максимуму набухания сетчатого полимера с растворимым компонентом, Q 2 – чистого сетчатого полимера, а Q 1 -Q 2 – количеству растворившегося компонента.

Увеличение объема полярных полимеров при набухании в полярных растворителях сопровождается уменьшением объема (контракцией) всей системы, которое обусловлено ориентацией и уплотнением при сольватации молекул растворителя на поверхности макромолекул, а также заполнением микропор внутри аморфных областей. Контракция V прямо пропорциональна интегральной теплоте набухания q инт, т.е. V / q инт =const, и может быть определена по эмпирическому уравнению: V=α m /(β + m), где m - масса растворителя, поглощенного при набухании 1 г полимера; α и β -константы.

Истинные растворы полимеров и растворы низкомолекулярных веществ различаются не только явлением набухания, но также рядом отклонений от классических законов и уравнений термодинамики. Любое растворение сопровождается уменьшением свободной энергии системы при смешении компонентов. Особенностью же растворения полимеров является очень большая роль энтропии, так как введение растворителя в полимер повышает вероятность изменения конформации макромолекул. Изменение энтропии Δ S см при растворении определяется уравнением Флори-Хаггинса:

Δ S см = -R(n 1 lnφ 1 + n 2 lnφ 2),

где R-универсальная газовая постоянная; n 1 и n 2 –число молей компонентов; φ 1 и φ 2 - их объемные доли. Теплота смешения Δ Н см при данной концентрации связана с плотностью энергии когезии следующим уравнением:

Δ Н см/ (V φ 1 φ 2)=[(Δ Е 1/ V 1) 1/2 -(Δ Е 2/ V 2) 1/2 ] 2,

где V -общий объем смеси; Δ Е 1 и Δ Е 2 -изменение энергии когезии в процессе смешения; V 1 и V 2 -объемы компонентов; φ 1 и φ 2 -объемные доли компонентов. Отношение Δ Е / V называется плотностью энергии когезии (плотностью энергии межмолекулярного притяжения), а величина (Δ Е / V) 1/2параметром растворимости δ. Таким образом, Δ Н= V 1 V 212) 2. Если δ 12 =0 (δ 12), то Δ Н=0, и при растворении главную роль играет энтропийный фактор.

Термодинамическое сродство полимера и растворителя, определяющее способность к растворению и набуханию, зависит от строения макромолекул полимера и молекул растворителя. Эмпирическое правило «подобное растворяется в подобном» подтверждается тем, что обычно неполярные полимеры легко растворяются в неполярных растворителях и не растворяются в полярных, а полярные полимеры растворяются в полярных растворителях. Взаимодействие функциональных групп или атомов приводит к возникновению донорно-акцепторных и иных связей, образующих устойчивые комплексы макромолекул полимера с молекулами растворителя, способные их отделить друг от друга и перевести в раствор. Например, ароматические полимеры вследствие подвижности π -электронов бензольного ядра образуют π -комплексы с молекулами ароматических или хлорсодержащих растворителей. Оценивают термодинамическое сродство компонентов по степени снижения их химических потенциалов, которые определяют путем измерения давления пара растворителя над раствором, осмотического давления, и другими методами.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.