Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Термомеханическая кривая и физические состояния полимеров. Агрегатные состояния полимеров. Термодинамика высокоэластической деформации.






Наличие барьера вращения вокруг простой С-С-связи в главной цепи макромолекулы и существование узлов флуктуационной сетки в массе полимера обуславливают ряд особенностей в изменении его механических свойств от температуры. Соотношение между величиной барьера вращения и величиной флуктуаций тепловой энергии зависит от температуры. При низкой температуре величина флуктуаций тепловой энергии становится настолько малой, что не преодолевает барьер вращения, и макромолекула теряет способность к деформации. Чем более гибкие макромолекулы, тем до более низкой температуры полимер остается эластичным.

Термомеханическая кривая имеет форму зависимости деформируемости полимера от температуры (рис.2.1) и информирует не столько о свойствах полимера при данной температуре, сколько о его структуре. При низкой температуре (область ) деформация мала и слабо увеличивается, так как аморфный полимер, подобно стеклу, находится в стеклообразном состоянии. Начиная с температуры стеклованияТс, деформация растет (переходная область IIа) и достигает нескольких десятков, а при снятии кривой в режиме растяжения – и сотен процентов. При дальнейшем нагревании деформация снова мало зависит от температуры, так как полимер перестает быть стеклообразным, но и не стал еще эластичным. Поэтому он деформируется вяло, как натуральная кожа или линолеум. При температуре выхода на плато (область IIIа) полимер переходит в развитое высокоэластическое состояние, в котором он легко деформируется при действии силы и быстро возвращается в исходное положение после снятия нагрузки. Температура начала деформации вязкого течения (изгиб на кривой), называется температурой текучестиТ т, выше которой полимер находится в вязкотекучем состоянии (область IVа). Если полимер состоит из макромолекул с регулярной структурой, то ближний порядок в расположении сегментов может перейти в дальний порядок, и возникнет кристаллическая структура, которая оказывается жесткой и малодеформируемой даже при степени кристалличности 30-35%. Полимер кристаллической структуры, например полиэтилен, обнаруживает свойства пластмассы, даже если его температура стеклования ниже комнатной (-70 о С), а при температуре плавления кристаллитов 110-135ОС (Т пл> Т т) сразу переходит в вязкотекучее состояние (кривая ). Полимеры с Т т > Т пл> Т с сначала переходят в высокоэластическое, а затем – в вязкотекучее состояние (кривая ).

а б

Рис.2.1. Термомеханические кривые аморфных (а) и кристаллических (б) полимеров:

I - стеклообразное состояние; II - переходная область; III - высокоэластическое состояние;

IV - вязкотекучее состояние (звездочкой отмечена точка начала термодеструкции).

 

Назначение термомеханической кривой полимера состоит в определении температурных пределов существования его физических (релаксационных) состояний - стеклообразного, высокоэластического и вязкотекучего, каждое из которых имеет определенное значение при его переработке или применении. Высокоэластическая деформация мало зависит от температуры и связана с изменением формы макромолекулярных клубков. Деформация вязкого течения связана со значительными смещениями сегментов относительно положения равновесия, приводящими к перемещению клубков друг относительно друга. Очень важно, что при температуре ниже Тс полимер сохраняет некоторый комплекс свойств и не становится хрупким, но может быть охлажден до температуры хрупкости Тхр, когда легко разбивается при ударе. На термо-механической кривой Тхр не проявляется в виде характерной точки, а методы ее определения всегда связаны с разрушением образца. Если область Тсхр протяженна и включает комнатную температуру, то полимер будет применяться как пластмасса (термопласт), а при совпадении комнатной температуры с областью Т т с полимер найтет применение в качестве эластомера (каучука).

В стеклообразном или высокоэластическом состояниях полимер под действием силы тяжести сохраняет свою форму, что характерно для твердого агрегатного состояния. В вязкотекучем состоянии то под действием силы тяжести он медленно растекается, что соответствует жидкому агрегатному состоянию. Газообразного состояния полимеры не могут иметь из-за большой длины макромолекул. Энергия межмолекулярного взаимодействия в расчете на одну макромолекулу настолько велика, что превышает энергию разрыва химических связей в основной цепи. Поэтому термодеструкция полимера идет легче, чем превращение его в газообразное состояние. Поскольку полимеры не испаряются, то межмолекулярное взаимодействие оценивают не теплотой испарения, а плотностью энергии когезии или параметром растворимости. Таким образом, особенности молекулярной и надмолекулярной структуры полимеров проявляются в характерной только для них зависимости свойств от температуры и обуславливают возможность существования их в трех физических и только двух агрегатных состояниях.

При эксплуатации изделия из полимеров подвергаются воздействию растяжения, сдвига и объемного сжатия (рис.2.2). В первом случае деформацию оценивают степенью растяжения λ = l / l о и относительным удлинением при растяжении ε =(l -1)/ l оl / l о. При сдвиге деформация γl / l о и расстояние l о не изменяется, а при объемном сжатии (например, гидравлическое сжатие) деформация оценивается по коэффициенту сжимаемости βV / V o.

Рис.2.2. Виды деформаций полимеров:






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.