Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Термодинамический расчёт теплофикационного цикла






Лекция 17

 

Р13.Т4 Теплофикация 1.0 час

Термодинамические основы теплофикации

Как известно, тепловые двигатели, по самому определению, предназначены для преобразования хаотической формы передачи энергии (в виде теплоты) в упорядоченную форму (механическое перемещение, электричество и др.). Однако кроме упорядоченной формы энергии человечество в своей деятельности нуждается также и в теплоте, в частности для отопления и осуществления всевозможных технологических процессов (приготовление пищи, сушка, химическая технология, металлургия и т.д.).

На первый взгляд может показаться, что проблема экономического совершенствования теплоснабжения к технической термодинамике как науке о совершенствовании тепловых двигателей не имеет прямого отношения, однако это не так. Дело в том, что теплота как одна из форм передачи энергии кроме количества, измеряемого в джоулях, обладает также и качеством, а именно потенциалом, т.е. температурой. В самом деле, мало кого заинтересует большое количество теплоты, подводимой в жилое помещение при температуре 10…12оС. С другой стороны, температура горения большинства из органических топлив, будь то дрова, уголь, газ, нефть и т.д., является слишком высокой для того, чтобы быть непосредственно используемой в целях отопления, либо для других технологических процессов. Техническая термодинамика указывает на один из возможных путей рационального использования «тепловой энергии» (заметим, что это устоявшееся в обиходе словосочетание не является корректным с точки зрения термодинамики; следует иметь в виду, что речь должна идти о передаче энергии в форме теплоты). Поскольку обычно используемый в целях отопления потенциал теплоты (температура) составляет 50…150оС (330…430 К), а температура горения топлива (температура факела) составляет величину порядка 1500…2000оС (1800…2300 К), то представляется весьма рациональным осуществить между этими температурными уровнями (потенциалами) цикл какого-либо теплового двигателя, уменьшив тем самым эксергетические потери, т.е. потери, связанные с необратимым теплообменом между обогреваемым помещением и источником теплоты. Такая совместная выработка упорядоченной формы энергии (как правило, электрической) и теплоты для производственных нужд и отопления помещений получила название теплофикация.

Покажем, что совместная выработка электрической и тепловой энергии (теплофикация) всегда более экономична с термодинамической точки зрения, нежели раздельная выработка. Для этого рассмотрим диаграмму , на которой условно изобразим температурные уровни для различных процессов подвода и отвода теплоты (рис. III.27). Точки над величинами в диаграмме обозначают полную производную по времени, т.е. мы будем сравнивать мощности различных схем выработки тепловой и электрической энергии. При этом мы не будем учитывать неизбежные в таких установках потери, так как их учёт не повлияет на ход рассуждений, хотя заметно усложнит анализ.

Раздельная выработка тепловой и электрической энергии представлена на рис. III.27 диаграммами и . В отопительной котельной продукты сгорания топлива отдают теплоту в процессе в количестве теплоносителю (как правило, воде), который через тепловые сети подаётся потребителю, обеспечивая тепловую нагрузку (без учёта потерь). Электрическая нагрузка N обеспечивается паросиловой установкой, работающей по циклу Ренкина со сбросом теплоты охлаждающей воде в конденсаторе. Такая установка получила название конденсационной.

Общий расход теплоты в котельной и в конденсационной установке при заданных тепловой и электрической нагрузках будет тогда определяться суммой

При совместной выработке тех же количеств тепловой и электрической энергии тепловая мощность парогенератора будет равна (также без учёта потерь)

Разность выражений и даёт экономию тепла (а значит топлива)

Теплофикация получила широкое распространение на тепловых и атомных электростанциях, питающих электроэнергией и теплом большие населённые пункты и крупные энергоёмкие производства. При этом в энергетической практике используются две схемы теплофикационных циклов – с противодавлением и с отбором пара на теплофикацию.

 

Термодинамический расчёт теплофикационного цикла






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.