-
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
-
-
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Элементарные преобразования матриц.
Определение 1. Элементарными преобразованиями матриц будем называть следующие преобразования:
1) умножение всех элементов какой-либо строки (столбца) на одно и то же число, отличное от нуля.
Обозначение для строк: , . Для столбцов: , .
2) прибавление к элементам одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на одно и то же число;
Обозначение для строк: . Для столбцов: .
3) перемена местами двух строк (столбцов).
Обозначение для строк: . Для столбцов: .
Если матрица получена из матрицы с помощью элементарных преобразований, то будем записывать это так: .
Лемма 1. Элементарные преобразования третьего типа равносильны нескольким последовательно выполненным преобразованиям первых двух типов.
Доказательство. Пусть матрица получилась из матрицы в результате перемены местами - ой и - ой строки, т.е. . Покажем, что матрица может быть получена из матрицы в результате элементарных преобразований только первых двух типов.

. Таким образом, получили матрицу , что и требовалось доказать. Совершенно аналогично это утверждение доказывается для столбцов.
Лемма 2. Элементарные преобразования матриц обратимы, т.е. если , то и .
Доказательство. Если матрица получилась из матрицы в результате умножения всех элементов - ой строки на число , т.е. то и матрица получается из матрицы в результате умножения всех элементов - ой строки на число , т.е. .
Если матрица получилась из матрицы в результате прибавления к элементам - ой строки матрицы соответствующих элементов - ой строки, умноженных на число , т.е. то и матрица получается из матрицы в результате прибавления к элементам - ой строки матрицы соответствующих элементов - ой строки, умноженных на число , т.е. .
Если матрица получилась из матрицы в результате перемены местами - ой и - ой строки, т.е. , то матрица также получается из матрицы результате перемены местами - ой и - ой строки, т.е. , и лемма 2 доказана. Совершенно аналогично это утверждение доказывается для столбцов.
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
Лемма 3. Если , то .
Доказательство проведём лишь для элементарных преобразований над строками, т.к. при транспонировании ранг матрицы не меняется. Пусть . Мы хотим доказать, что . По следствию к лемме 2 §11 это будет доказано, если мы докажем, что все миноры ( )-го порядка матрицы равны 0. В силу леммы 1 это достаточно доказать лишь для случая, когда матрица получена из матрицы с помощью элементарных преобразований 1-го и 2-го типа.
1)Пусть матрица получилась из матрицы в результате умножения всех элементов - ой строки на число 
и пусть - минор ( )-го порядка матрицы . Могут представиться следующие случаи:
а) - ая строка не входит в состав минора . Тогда как минор ( )-го порядка матрицы .
б) - ая строка входит в состав минора . Тогда , где - минор ( )-го порядка матрицы , стоящий в строках и столбцах с теми же номерами, что и . Здесь мы воспользовались свойством 4 определителей. Следовательно, как минор ( )-го порядка матрицы , т.к. . Отсюда получаем: .
2) Пусть матрица получилась из матрицы в результате прибавления к элементам - ой строки соответствующих элементов - ой строки, умноженных на число , и пусть - минор ( )-го порядка матрицы . Могут представиться следующие случаи:
а) - ая строка не входит в состав минора . Тогда как минор ( )-го порядка матрицы .
б) и - ая, и - ая строки входят в состав минора . Тогда:
,
т.к. - минор ( )-го порядка матрицы . Здесь мы воспользовались свойством 7 определителей.
в) - ая строка входит, а - ая строка не входит в состав минора . Тогда:

Здесь мы воспользовались свойствами 6 и 4 определителей.
- минор ( )-го порядка матрицы . Определитель в общем случае не является минором ( )-го порядка матрицы , т.к. выделенная строка может оказаться не на «своём» месте. Определитель отличается от некоторого минора ( )-го порядка матрицы только порядком строк, и потому .
Лемма 3 доказана.
Проиллюстрируем на примере рассуждение пункта в) доказанной леммы 3.
Пример. Пусть матрица получилась из матрицы в результате прибавления к элементам 1-ой строки соответствующих элементов 3-ей строки, умноженных на число 2:
.
Рассмотрим - минор 2-го порядка матрицы , стоящий в первых 2-х столбцах и в строках с номерами 1 и3
Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:
— Разгрузит мастера, специалиста или компанию;
— Позволит гибко управлять расписанием и загрузкой;
— Разошлет оповещения о новых услугах или акциях;
— Позволит принять оплату на карту/кошелек/счет;
— Позволит записываться на групповые и персональные посещения;
— Поможет получить от клиента отзывы о визите к вам;
— Включает в себя сервис чаевых.
Для новых пользователей первый месяц бесплатно.
Зарегистрироваться в сервисе

Определитель не является минором матрицы , т.к. строки стоят в другом порядке, но определитель , отличающийся от предыдущего только порядком строк, является минором 2-го порядка матрицы и потому равен 0, т.к. .
Теорема 1. В результате элементарных преобразований ранг матрицы не меняется, т.е. если , то
.
Доказательство. Пусть . Тогда по лемме3 . Элементарные преобразования обратимы (по лемме 2). Следовательно, в этом случае матрица может быть получена из матрицы в результате элементарных преобразований, и по лемме 3 получаем: . Таким образом, , и теорема доказана.
Теорема 2. Любая матрица с помощью элементарных преобразований над строками и, возможно, перестановки столбцов, может быть преобразована в трапециевидную.
Доказательство. Если матрица нулевая, то она трапециевидная по определению, и доказывать нечего.
Если она ненулевая, то она содержит ненулевой элемент, который с помощью перестановки строк и столбцов можно переместить в левый верхний угол. Поэтому будем считать, что . Пусть матрица имеет следующий вид:
.
Совершим следующие элементарные преобразования над строками:
.
Если матрица , то уже получили трапециевидную матрицу.
В противном случае с помощью перестановки последних строк и последних столбцов добьёмся того, чтобы элемент, стоящий во 2-ом столбце и во 2-ой строке был бы отличен от нуля. Поэтому будем считать, что .
Теперь совершим следующие элементарные преобразования над строками:
.
Если , то получили трапециевидную матрицу.
В противном случае продолжим этот процесс до тех пор, пока в нескольких последних строках все элементы не будут равны 0, т.е. , или пока не исчерпаем все строки. В результате получим трапециевидную матрицу.
Следствие. Любая матрица строения ранга с помощью элементарных преобразований над строками и, возможно, перестановки столбцов, может быть преобразована в матрицу вида:
.
Если , то последние нулевые строки отсутствуют. Если , то эта матрица имеет вид: .
Доказательство. Из доказанной теоремы следует, что матрица с помощью указанных преобразований может быть преобразована в матрицу
, причём для всех .
Совершим следующие элементарные преобразования над строками:
.
Теперь с помощью -ой строки получим в -ом столбце в строках с номерами нули. Для этого от
-ой строки отнимем -ю, умноженную на ( ).В результате получим матрицу:
. Теперь действуя аналогично -ой строкой получим нули в -ом столбце в строках с номерами и т.д.
Замечание. Можно доказать, что если базисный минор матрицы стоит в первых столбцах, то можно получить матрицы указанного вида совершая элементарные преобразования только над строками.
Покажем это на примере.
|