Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод Гаусса (метод последовательного исключения неизвестных) решения систем линейных уравнений






 

1. Под элементарными преобразованиями системы линейных уравнений понимаются следующие операции:

1) умножение какого-либо уравнения системы на число, отличное от нуля;

2) прибавление к одному уравнению другого уравнения;

3) перемена местами уравнений в системе.

Комбинируя элементарные преобразования первого и второго типов, мы можем к любому уравнению прибавить другое уравнение, умноженное на произвольное число.

Производя элементарные преобразования в системе, мы получаем новую систему. Очевидно, что каждому элементарному преобразованию системы соответствуют аналогичные преобразования над строками расширенной матрицы этой системы, и наоборот, каждому элементарному преобразованию строк расширенной матрицы соответствует некоторое элементарное преобразование в системе. Таким образом, элементарные преобразования в системе сводятся к соответствующим преобразованиям над строками ее расширенной матрицы.

Две системы линейных уравнений от одних и тех же неизвестных называются равносильными, если каждое решение одной из них является решением другой, и наоборот (или если обе системы несовместны).

Заметим, что число уравнений в равносильных системах может быть различным.

ТЕОРЕМА. При элементарных преобразованиях система линейных уравнений переходит в равносильную систему.

Сущность метода Гаусса заключается в том, что с помощью элементарных преобразований система уравнений приводится к такому виду, чтобы матрица системы оказалась треугольной. Для упрощения изложения мы будем иметь дело не с самой системой, а с расширенной матрицей этой системы (производя при этом элементарные преобразования только над строками матрицы).

Рассмотрим алгоритм применения метода Гаусса на простых Типовой примерах.

Типовые примеры. Решить систему уравнений

1)

► Будем решать методом Гаусса. Выпишем расширенную матрицу системы и преобразуем её, вычитая первую строку, умноженную на 2, 3 и 1 соответственно из 2-ой, 3-ей и 4-ой строк:

.

Далее вторую строку, умноженную на 2 и 3, вычтем соответственно из третей и четвёртой строк:

Последняя матрица эквивалентна следующей ступенчатой системе:

Полученная упрощённая система представляет собой систему из двух уравнений для четырёх неизвестных. Следовательно, два из неизвестных можно выбрать за главные, а два - за свободные, через которые будут выражены главные. Число свободных неизвестных определяется по формуле , где – число неизвестных в исходной системе, – ранг матрицы системы (совпадающий с рангом расширенной матрицы в силу совместности системы). В качестве главных неизвестных можно выбрать любую пару, если определитель, составленный из коэффициентов, стоящих перед ними, отличен от нуля (базисный минор). В данной задаче в качестве главных неизвестных можно выбрать . Действительно, определитель, составленный из их коэффициентов, отличен от нуля:

.

Теперь из второго уравнения выразим через . Затем подставим его в первое уравнение и найдём через . В итоге получим

Переменные принимают произвольные значения. Положив , общее решение системы можно записать в виде

.◄

2)

► Преобразуем расширенную матрицу системы:

~ .

Отсюда следует, что , , т.е. исходная система несовместна. Заметим, что, применяя метод Гаусса (т.е. исключая неизвестные), мы одновременно проводим исследование системы на совместность (т.е. отыскиваем ранги матрицы системы и расширенной матрицы).◄

3)

► Исследуем систему на совместность:

~ .

Отсюда следует, что – система совместна.

Итак, полученная система, равносильная исходной, содержит одно уравнение с двумя неизвестными. Решение этой системы может быть найдено только в том случае, если мы придадим произвольное действительное значение одному из неизвестных. Тогда другое неизвестное можно выразить через первое.

Положим ; тогда . В итоге получаем общее решение системы:

, где – произвольная постоянная.

Придавая постоянной различные действительные значения, получаем бесконечное множество решений исходной системы.

При желании можно произвести проверку:

.◄

4)

► Во всех трех системах воспользуемся методом Гаусса.

~

~

Расширенная матрица приведена к трапецеидальному виду. Объявляем «лишние неизвестные» и свободными; запишем систему, соответствующую этой трапецеидальной матрице, перенеся свободные неизвестные и в правую часть:

Степень свободы системы равна двум, значит, решение системы выразится через два параметра. Положив и решив систему из трех уравнений с неизвестными найдем

где произвольные числа. ◄

5)

в результате преобразований появилась строка следовательно, система несовместна. ◄

6)

Ранг трапецеидальной матрицы равен 2, значит, степень свободы равна Объявляем неизвестные свободными. Положив получим

Таким образом, решением системы является

где произвольные числа (параметры). ◄

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.