Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Фильтрация стимула






Анатомические и физиологические исследования органов чувств и связанных с ними отде­лов нервной системы могут дать ценную информацию о сенсорных способностях животного. Однако сами по себе они не позволяют сделать окончательных выводов о том, что животное воспринимает и чего не воспринимает, поэтому обычно желательно поведенческое подтвер­ждение. Кроме того, демонстрация того, что ЦНС получает определенную сенсорную информа­цию, ничего не говорит нам о том, как эта информация используется.

Потенциально животному доступно гораздо больше информации, чем оно в состоянии за­регистрировать и на которую способно ответить. Каким-то путем животное должно произво­дить отбор, реагируя только те явления, которые ему важны, и игнорируя остальные. Этот фе­номен называют фильтрацией стимула. Смысл его в том, что на разных стадиях причинной цепи между стимулом и реакцией некоторые стимулы отфильтровываются и не влияют на по­ведение животного.

В известном смысле некоторая степень фильтрации обусловлена ограниченными возмож­ностями органов чувств. Так, например, ухо человека не реагирует на звуки частотой выше 20 кГц. Глаз человека отфильтровывает инфракрасные и ультрафиолетовые части спектра, хотя некоторые животные их различают. Интересный пример приведен в работе по древесной ля­гушке. Ее видовое латинское название происходит от особого издаваемого самцом звука «ко-кви», который служит для привлечения самок и отпугивания самцов. Барабанная перепонка у самцов и самок настроена по-разному. Самцы слышат только звук «ко», а самки - звук «кви». Точно так же рецепторы насекомых часто высокоспециализированны и реагируют только на уз­кий диапазон стимуляции.

Когда стимул обнаружен, он может быть автоматически классифицирован таким образом, что все его посторонние особенности отфильтровываются. Так, например, Летвин и др. пока­зали, что у лягушки фоторецепторы сетчатки соединены между собой, образуя рецептивное поле. Некоторые из них, называемые «детекторами жуков», различают главным образом мелкие темные движущиеся предметы. В поисках пищи лягушки реагируют на такие объекты больше, чем на другие стимулы.

Избирательная реактивность широко распространена у животных. Реагируя в определен­ной ситуации, животное использует только часть потенциально доступной информации. Так, например, Лэк наблюдал, что самцы зарянок часто нападают на других красногрудых зарянок, которые вторгаются на их территорию. Они нападут также на чучело зарянки, помещенное на эту территорию, но только если у него красная грудь. По-видимому, красная грудь служит мощным стимулом для выделения нарушителя границ. Лэк показал, что хозяин территории энергично нападает на пучок красных перьев, как будто это зарянка-нарушитель. Нет сомнения, что зарянка способна отличить пищу от пучка перьев, но в ситуации защиты территориальных границ она как бы слепнет в отношении всех прочих признаков объекта, кроме красной груди. Такого типа стимул называется сигнальным раздражителем.

Сигнальные раздражители могут меняться с изменением внутреннего состояния живот­ного. Так, серебристые чайки крадут и поедают яйца других чаек. Чайка-грабитель различает яйца по их форме. Но для насиживающей чайки при возвращении выкатившихся яиц в гнездо важнее всего их величина и окраска, а форма имеет сравнительно малое значение. Такие птицы, в частности, готовы затаскивать в гнездо круглые или цилиндрические предметы того же раз­мера и окраски, что и настоящее яйцо. Однако, как только чайка садится на яйца, их форма снова приобретает значение и если отличается от округлой, птица отказывается от насижива­ния. Таким образом, яйца обладают тремя разными наборами сигнальных раздражителей соот­ветствующими трем разным видам поведения.

Другой интересный пример сигнальных раздражителей содержится в работе Г. Бургхардта с сотрудниками по пищевому поведению подвязковых змей и ужей, которые живут в США в реках и прудах и питаются мелкими рыбешками и червями. Они обнаруживают свою добычу по вкусу и запаху и обладают хеморецепторами, находящимися в парных ямках на нёбе, так назы­ваемым «якобсоновым органом». Змея высовывает язык, слизывает химические вещества с до­бычи и затем вставляет кончик языка во вкусовые ямки. Бургхардт предлагал разным видам подвязковых змей ватные тампоны, пропитанные экстрактами из рыб, лягушек, саламандр и червей. Он обнаружил, что разные виды оказывали большее предпочтение тому типу добычи, которым они обычно питаются в естественных условиях. Эта тенденция проявлялась у ни разу не питавшихся новорожденных змей, причем ее нельзя было изменить, меняя пищу матери или насильно кормя молодых змей искусственной пищей. Однако предпочтения изменяются, когда змеи переключаются на другую добычу. Так, виды, в естественных условиях предпочитавшие гольянов, начинают предпочитать серебряных карасей, привыкнув питаться этими рыбами. По-видимому, химические свойства определенной добычи действуют как сигнальные раздражители в отношении которых змея обладает генетически обусловленной склонностью, однако эта склонность может изменяться под влиянием приобретенного опыта.

Хотя некоторые сигнальные раздражители могут быть результатом периферической фильтрации, совершенно очевидно, что большая часть таких стимулов определяется процес­сами в ЦНС, какой-то центральный фильтрующий механизм определяет способность многих видов предпочтительно реагировать на сигнальные раздражители.

В этологических исследованиях также привлек к себе внимание особый временный тип фильтрации стимулов, отличный от сравнительно постоянного опознания сигнальных раз­дражителей. Это понятие поискового образа, впервые предложенное Я.Юкскюлем. Нам всем знаком такой феномен восприятия, когда вдруг увидишь то, чего раньше не замечал. Когда мы смотрим на фотографию замаскированных насекомых, то сначала можем не различать ни од­ного из них, потом вдруг увидим одно, за ним другое и т. д. После этого нам кажется, что найти их на фотографии совсем нетрудно. У нас сформировался поисковый образ насекомого.

Во многих работах показано наличие таких поисковых образов у животных. Так, напри­мер, Кроуз научил черных ворон искать корм, спрятанный под раковинами мидий разного цвета, разбросанными на большом расстоянии друг от друга по земле. Вороны должны были переворачивать каждую раковину, чтобы увидеть, не лежит ли под ней корм. В течение некото­рого времени они предпочтительно сосредоточивали поиск на одном цвете и игнорировали ра­ковины других цветов, хотя у них и был опыт обнаружения корма под раковинами всех типов. Одного образца, предъявленного экспериментатором, иногда было достаточно, чтобы вызвать поиск раковин определенного цвета. Вороны вели себя так, как будто обладали поисковым об­разом для определенной окраски раковины, который сохранялся некоторое время, но легко мог переключиться на другой цвет.

Самое тщательное исследование поисковых образов проведено Мэриан Доукинс у цыплят в лабораторных условиях. В течение трех недель цыплят кормили окрашенными в оранжевый или зеленый цвет рисовыми зернами на белом фоне. Затем тестировали способность цыплят об­наруживать зерна на фоне другого цвета и на фоне того же цвета. Доукинс обнаружила, что, хотя сначала цыплята не различали замаскированные зерна, постепенно по мере приобретения опыта наступало заметное улучшение их поиска. Выяснилось также, что опыт поедания замет­ных зерен понижал способность цыплят видеть замаскированный корм. Поэтому способность обнаруживать его, очевидно, не может объясняться просто приобретением опыта.

В следующих экспериментах Доукинс тестировала цыплят, которые уже питались опреде­ленным исходным видом зерен. Она установила, что, когда исходные зерна были заметны, цып­лята больше реагировали на тестовые зерна, выделяющиеся по цвету. Когда же исходные зерна были замаскированы, цыплята больше реагировали на тестовые зерна, различимые не по цвето­вым признакам, а по текстуре и форме. Эти данные можно толковать как избирательное внима­ние. Так, когда исходные зерна были заметны благодаря их цвету, цыплята обращали внимание на цвет, и, следовательно, затем им было легче обнаруживать зерна по цвету. Когда же исход­ные зерна были замаскированы, т. е. окрашены точно так же, как фон, цыплята обращали вни­мание на нецветовые признаки. В результате им было легче обнаруживать тестовые зерна по нецветовым признакам.

Животное способно различать два стимула, но обычно лишь после того, как его научат этому. Такое научение называется дискриминационным, или различительным. Подходя­щими стимулами для исследования такого научения у крыс являются черный и белый прямо­угольники. Обычно их предъявляют на сером фоне, и опыт должен содержать все рассматри­ваемые ниже обычные контроли. Не ограничивая животное одним признаком, важнейшим при исследовании сенсорных способностей, можно изучать, как наличие двух путей решения задачи влияет на процесс научения. Так, прямоугольники могут различаться величиной или ориента­цией.

Рассмотрим случай различения по яркости и ориентации, когда черный прямоугольник предъявляется в вертикальном положении, а белый - в горизонтальном. Теперь мы должны ре­шить, какой стимул будет вознаграждаться, а какой не будет. Здесь мы наталкиваемся на про­блему, как не спутать предпочтения крысы с ее способностями к научению. Они предпочитают черное белому. При вознаграждении черного стимула крысе будет легче решить задачу, чем при вознаграждении белого. Та же проблема встает и в отношении ориентационного признака, так что 20 крыс поделили на 4 группы.

Таблица 5. План опыта по различению

Группа Число крыс Ориентация стимула Цвет стимула
    Г Ч
    В Ч
    Г Б
    В Б
Ч -черный; Б -белый; Г -горизонтальный; В - вертикальный.

Сазерленд и Макинтош показали, что при решении задач такого типа животные должны научиться двум вещам: 1) на какие свойства стимулов обращать внимание и 2) какое из двух проявлений этого свойства вознаграждается. Например, крыса, получившая награду за то, что обратила внимание на яркость стимула, скорее будет и в дальнейшем обращать внимание на яр­кость. Крысы, научившиеся реагировать на определенную яркость или ориентацию или на оба этих свойства, успешно научались решать описанную выше задачу.

Чтобы определить, на какие свойства стимулов крысы в самом деле научились обращать внимание, проводятся невознаграждаемые тесты на перенос. При них крысам предъявляют стимулы, различные по ориентации или яркости, но не по обоим этим свойствам. Так, в поло­вине проб стимулы представляют собой черные или белые прямоугольники, различающиеся только по ориентации, а во второй половине горизонтальные или вертикальные прямоуголь­ники, различающиеся только по яркости. Крысы, научившиеся обращать внимание лишь на ориентацию, способны решить только первую задачу, а те, которые научились обращать внима­ние только на яркость, могут решить вторую задачу, но не могут — первую.

 

12. Экологическая обусловленность чувств животных.

 

Многие различия между животными объясняются не столько их эволюционной историей, сколько экологическими условиями.

Животное, глаза которого приспособлены к яркому свету, будет обладать хорошей остро­той зрения, восприятием цвета и движения. Такие типично дневные глаза относительно нечув­ствительны к низким уровням освещенности. Животные, адаптированные к сумеречному осве­щению, обладают более высокой чувствительностью, но в ущерб цветовому и детальному предметному зрению.

Видеть при слабом освещении нужно животным, ведущим ночной образ жизни, обитаю­щим глубоко в воде и в пещерах. Эти условия не совсем сравнимы, потому что спектр прихо­дящего света смещен в воде. Нет данных о том, что ночные животные обладают повышенной чувствительностью к длинным волнам. Однако некоторые из них владеют приспособлениями, повышающими чувствительность к свету. Глаза с широким зрачком и большим хрусталиком улавливают больше света, чем маленькие глаза. Глазами первого типа обладают, например, опоссум, домовая мышь и рысь. У других ночных животных, например сов и галаго, череп су­жен с боков, что привело к цилиндрическому удлинению глаза. Цилиндрические глаза встреча­ются также у некоторых глубоководных рыб. Многие глубоководные животные специально адаптированы к господствующим условиям освещения. Максимумы поглощения у зрительных пигментов глубоководных рыб совпадают с длиной волны, максимально пропускаемой водой. У глубоко ныряющего кита северного плавуна зрительные пигменты сильнее всего поглощают более короткие волны, чем у неглубоко ныряющею серого кита. Точно так же глаза глубоко­водных морских ракообразных содержат зрительные пигменты с максимумами поглощения в более коротковолновой области, чем у мелководных ракообразных.

В дополнение к свойствам зрительных пигментов сумеречное зрение усиливают также другие специальные приспособления. Как правило, у ночных животных палочек больше, чем колбочек, а у некоторых из них, например у кошачьей акулы и галаго, мало или совсем нет. У многих ночных позвоночных близ фоторецепторов расположены отражающие свет образова­ния, благодаря которым глаза " светятся", когда на них падает луч света. Свет, который прохо­дит через фоторецептор не поглотившись, отражается обратно, что повышает вероятность по­глощения.

Существует грань, за которой условия для зрения так тяжелы, что от глаз как от главного органа чувств приходится отказаться. У большинства животных, обитающих в пещерах, в глу­бине моря или же в мутной воде, глаза рудиментарные вследствие их регрессии. Например, пе­щерные земноводные обладают глазами на личиночной стадии, но лишены их во взрослом со­стоянии. Если этих животных воспитывать на свету, то у взрослых особей развиваются нор­мальные глаза. У молоди слепой пещерной рыбы имеются глаза, но у взрослых животных они дегенерируют. Садоглу обнаружил, что дегенеративное состояние глаз у пещерного вида опре­деляется генами.

Среди млекопитающих кроты и летучие мыши являются самыми известными примерами дегенерации зрения. Очень маленькие глазки кротов у некоторых видов покрыты кожей. У пло­тоядных рукокрылых зрение развито хорошо, но у ночных летучих мышей, особенно у тех ви­дов, которые ловят насекомых на лету, зрение очень слабое.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.