Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Сбор нагрузок на поперечную раму






Компоновка поперечной рамы

 

Рис.1. Схема поперечной рамы каркаса

 

 

В начале устанавливаем величину расстояния от головки рельса до низа конструкции покрытия

Н2 = (Нкр + 100) + а,

где Hкр + 100 – габаритный размер от головки рельса до верхней точки тележки крана плюс допуск на изготовление крана, равный 100 мм;

a – размер зазора между краном и строительными конструкциями покрытия, учитывающий возможный прогиб ферм и связей а = 200÷ 400 мм.

Н2 = (4000 + 100) + 300 = 4400 мм.

Определяем высоту цеха Н = Н1 + Н2 и принимаем кратной 1, 8 м.

Н=4400 + 9500= 13900 мм. Принимаем высоту кратной шагу панелей(1, 8 м) Н =14400 мм.

Определяем высоту от подкрановой площадки до низа конструкций покрытия

Нв = hпб + hкр + Н2

и принимаем кратной 200 мм,

где hпб – высота подкрановой балки hпб = 1650 мм;

hкр – высота подкранового рельса, hкр = 150 мм.

Нв = 1500 + 150 + 4400 = 6200 мм. Принимаем Нв = 6200 мм.

Определяем высоту нижней части колонны по формуле

Нн = Н – Нв + Нзф,

где Нзф – заглубление башмака колонны.

Нн = 14400 – 6200 + 600 = 8800 мм.

Общая высота колонны Нк = Нн + Нв = 8800 + 6200 = 15000 мм.

Для ступенчатой колонны из условия жесткости высота се­чения в верхней части колонны hв > 1/12Н2·hв > H2/12 = 6200/12 = 516 мм, принимаем hв = 700 мм.

λ 1³ В1 + (hв – a) + 75 = 400 + (700 – 500) + 75 = 675 мм. λ 1 = 750 мм, hн = λ 1 + 500 = 750 + 500 = 1250 мм > Н/20 = 440 мм.

Принимаем hн = 1250 мм.

Сбор нагрузок на поперечную раму

Подготовка данных для расчета в « SCAD Structure ».

Исходные данные

· пролет здания L = 36 м;

· шаг стропильных ферм Sf = 6 м;

· шаг колонн Sk = 12 м;

· узел примыкания ферм к колоннам – жесткий;

· температурный режим цеха –горячий цех;

· грузоподъемность мостовых кранов Q = 80 т;

· отметка головки кранового рельса – 9, 5м;

· режим работы мостовых кранов – ;

· место строительства – г. Томск, тип местности В по [1].

 

Загружение №1. Постоянная нагрузка.

В расчетах учтем собственный вес элементов расчетной схемы, покрытия, стеновых панелей и подкрановых конструкций. Конструкции покрытия и стеновых панелей принимаются в зависимости от температурного режима, места строительства и согласовываются с руководителем курсового проекта №2 по дисциплине «Металлические конструкции».

пппп

 

а) Элементы расчетной схемы. Их собственный вес вычисляется автоматически программой «SCAD Structure».

 

Нагрузки от покрытия.

№ П/П Вид нагрузки кН/м2 g кН/м2
  Плоский стальной лист по прогонам t = 3 мм 0, 4 1, 05 0, 42
  Прогоны прокатные 0, 08 1, 05 0, 084
  Стропильная ферма 0, 19 1, 05 0, 2
  Подстропильная ферма 0, 03 1, 05 0, 032
  Связи покрытия 0, 04 1, 05 0, 042
  Конструкция фонаря 0, 12 1, 1 0, 132
Итого по покрытию 0, 86   0, 91

Интенсивность погонной нагрузки по ригелю рамы:

q п = 0, 91 х 6 = 5, 46 кН/м

Сосредоточенные силы приложенные к узлам ферм:

P1 = 5, 46 х 3 = 16, 38 кН

P2= 5, 46 х 1.5 = 8, 19 кН – у крайних узлов

P3= 5, 46 х 108 = 589, 68 кН

Нагрузки от собственной массы стеновых конструкций и переплетов с остеклением.

№ П/П Вид нагрузки кН/м2 g кН/м2
  Трехслойные стеновые панели со стальной обшивкой t = 50 мм 0, 183 1, 1 0, 202
  Ригели 0, 068 1, 05 0, 071
    0, 251   0, 273

Распределенная нагрузка:

q ст = 0, 273х 12 = 3, 276 кН

Распределенный момент в верхней части колонны:

m1 = qст х е1 = 3, 276 х(0.35+0, 2/2+0, 16) =2, 85 (кН х м)/м

Распределенный момент в нижней части колонны:

m2 = qст х е2 = 3, 276 х(0.625+0, 2/2+0, 16) = 3, 75 (кН х м)/м

 

 

в) Подкрановые конструкции.

В нагрузке от подкрановых конструкций учитывается собственный вес подкрановых балок с тормозными конструкциями и собственный вес кранового рельса.

Нормативный вес подкрановых балок для расчета рамы можно принять по табл. 2.2 [4]: G = 24 кН. Расчетная сосредоточенная сила от подкрановой балки вычисляется с учетом коэффициента надежности по нагрузке (gf=1, 05) и коэффициента, учитывающего вес тормозных конструкций (kt = 1, 5): P41 = G gf kt =24´ 1, 05´ 1, 5= 37, 8кН.

По табл. П3.3 [2] принимаем для крана грузоподъемностью 80 т крановый рельс КР100. Его нормативный вес равен q = 0, 89 кН/м (см. табл. П3.4 [2]). Нагрузка на колонны от кранового рельса равна

P42 = q gf Sk =0, 89´ 1, 05´ 12= 11, 21 кН.

Суммарная нагрузка от подкрановых конструкций составляет

P4 = P41 + P42 =37, 8+11, 21= 49, 01 кН.

Сосредоточенная сила от подкрановых конструкций действует на нижнюю часть колонн с эксцентриситетом e = hн /2 = 1250/2=0, 625 м и создает изгибающий момент

M1 = P4 * e =49, 01*0, 625= 30, 63 кН*м.

Постоянная нагрузка изображена на рис. 3.

ссссс

Далее рассмотрим снеговые нагрузки.

Снеговая нагрузка вычисляется по п.5.1* [1]:

S = Sg ´ m,

где Sg – расчетное значение веса снегового покрова, принимаемое по табл. 4* [1] в зависимости от снегового района;

m – коэффициент перехода от веса снегового покрова к снеговой нагрузке на покрытие.

Согласно карте 1* прил. 5 к [1], г. Томск расположен в IV снеговом районе, и Sg = 2, 4 кН/м2.

Для различных конфигураций покрытий существуют несколько вариантов коэффициентов m, что определяет наличие нескольких вариантов снеговой нагрузки.

 

 

Загружение №2. Снеговая нагрузка (вариант 1)

Снеговая нагрузка принимается для номера схемы 3 прил. 3* [1], по рисунку варианта 1 для зоны «C» покрытия.

Коэффициенты m принимают следующие значения:

· m1 = 0, 8;

· a = 12 м, b = 12 м, m2 = 1 + 0, 1 a / b = 1, 1.

Снеговая нагрузка приводится к системе сосредоточенных сил, вычисляемых по грузовым площадям аналогично силам от постоянной нагрузки по покрытию.

· Сосредоточенные силы в узлы 8, 20 верхнего пояса фермы:

P1 = Sg ´ m2 ´ Sf ´ 1, 5м =2, 4´ 1, 1´ 6´ 1, 5= 23, 76кН.

· Сосредоточенные силы в узлы 9, 10, 11, 17, 18, 19 верхнего пояса фермы:

P2 = Sg ´ m2 ´ Sf ´ 3м= 2, 4 ´ 1, 1 ´ 6´ 3м = 47, 52кН.

· Сосредоточенные силы в узлы 12, 16 верхнего пояса фермы:

P3 = Sg ´ (m1 + m2) ´ Sf ´ 1, 5м = 2, 4 ´ (0, 8 + 1, 1) ´ 6´ 1, 5м = 41, 04 кН.

· Сосредоточенные силы в узлы 13, 15 верхнего пояса фермы:

P4 = Sg ´ m1 ´ Sf ´ 3м =2, 4 ´ 0, 8 ´ 6 ´ 3м = 34, 56 кН.

P5 = Sg ´ (Sк- Sf) ´ (m2 ´ b+m1´ a/2) =2, 4 ´ 6 ´ (1, 1´ 12+0, 8´ 12/2) = 259, 2 кН.

 

Рис

 

Загружение №3. Снеговая нагрузка (вариант 2)

Снеговая нагрузка принимается для номера схемы 3 прил. 3* [1], по рисунку варианта 2 для зоны «C» покрытия.

Коэффициенты m принимают следующие значения:

· m1 = 1;

· a = 12 м, bl = 3 м (ширина «снегового мешка», равная высоте фонаря),

m3 = 1 + 0, 5 a / bl = 3.

При вычислении коэффициента m3 необходимо учесть, что он не может быть больше предельной величины. Предельная величина m3 принимается в зависимости от типа и нормативного веса покрытия. Нормативный вес покрытия равен 5, 46 кПа, чему соответствует предельное значение коэффициента m3 = 2, 5, следовательно m3 =2, 5.

Снеговая нагрузка приводится к системе сосредоточенных сил аналогично снеговой нагрузке по первому варианту.

 

· Сосредоточенные силы в узлы 8, 20 верхнего пояса фермы:

P1 = Sg ´ m1 ´ Sf ´ 1, 5м = 2, 4 ´ 1 ´ 6 ´ 1, 5м = 21, 6 кН.

· Сосредоточенные силы в узлы 9, 19 верхнего пояса фермы:

P2 = Sg ´ m1 ´ Sf ´ 3м = 2, 4´ 1 ´ 6 ´ 3м = 43, 2 кН.

· Сосредоточенные силы в узлы 9, 15 верхнего пояса фермы:

P3 = Sg ´ (m1 + m3) ´ Sf ´ 1, 5м= 2, 4 ´ (1 + 2, 5) ´ 6 ´ 1, 5м =75, 6 кН.

· Сосредоточенные силы в узлы 12, 16 верхнего пояса фермы:

P4 = Sg ´ m3 ´ Sf ´ 1, 5м = 2, 4 ´ 2, 5 ´ 6 ´ 1, 5м = 54 кН.

P5 = Sg ´ (Sк -Sf)´ (m1´ (b-b1) +m3´ b1 )= 2, 4 ´ 6 (1´ 9+2.5´ 3) = 237.6 кН.

 

Второй вариант снеговой нагрузки показан на рис. 5.

 

Загружение №4. Ветер (слева)

Расчетное ветровое воздействие на раму в виде распределенных по высоте колонн нагрузок определяется по п.п. 6.3…6.6, 6.11 [1]:

w = w0 k c gf Sk,

где w0 – нормативное значение ветрового давления, принимаемое по табл.5 [1] в зависимости от ветрового района;

k – коэффициент изменения ветрового давления по высоте (табл. 6 [1]);

c – аэродинамический коэффициент (прил. 4 [1]);

gf – коэффициент надежности по ветровой нагрузке, равный 1, 4;

Sk – шаг колонн.

Согласно карте 3 прил. 5 к [1], г. Томск расположен в III ветровом районе, и w0 = 0, 38 кН/м2.

Коэффициент k принимается по табл. 6 [1] для местности типа «В» (согласно исходным данным).

Аэродинамический коэффициент принимается для номера схемы 1 прил. 4 [1]:

· c = 0, 6 для наветренной продольной стены цеха (для давления ветра);

· c = 0, 5 для подветренной продольной стены цеха (для ветрового отсоса).

Вычисленные величины ветровых нагрузок показаны на рис. 6.

Ветровые распределенные нагрузки вычислены в характерных точках колонн – на границах конечных элементов и в точках перелома эпюр ветрового воздействия. Этим точкам соответствуют отметки +5, 000 м, +8, 800 м (уровень сопряжения верхней и нижней частей колонн), +9, 500 м (отметка головки кранового рельса), +14, 4м (низ фермы), +16, 6 м (верх фермы), +19, 600 м (верх фонаря).

В расчетную схему (рис. 2) не включены конструкции светоаэрационного фонаря. Поэтому воздействие ветра на фонарь учтено в виде сосредоточенных равнодействующих сил, числено равных площадям участков эпюр распределенных нагрузок:

· для давления ветра: P1 = (w1 + w2) / 2 ´ 3м=(3+3, 23) / 2 ´ 3м = 9, 345кН (3 м – высота фонаря);

· для ветрового отсоса: P2 = (w3 + w4) / 2 ´ 3м =(2, 69 + 2, 5) / 2 ´ 3м = 7, 785 кН.

 

Загружение №5. Крановая нагрузка на левую колонну

В курсовом проекте крановые воздействия рассчитываются от двух кранов заданной грузоподъемности.

Выпишем из табл. П3.3 [2] параметры крана.

Грузоподъемность крана Q = 800 кН.

Расстояние между упорами крана B = 9, 1 м.

Расстояние между колесами крана вдоль подкрановой балки Acr=4, 35м. Для кранов грузоподъемностью 80 т и более: Acr – то же расстояние между внутренними колесами крана.

Максимальная нагрузка

Fmax =(F1 + F2) / 2 =(387 + 412) / 2 = 399, 5 кН.

Собственный вес тележки mт = 33, 0 кН.

Собственный вес крана с тележкой mk = 1230 кН.

Количество колес на одной стороне крана n0 = 4.

Максимальное давление крана и величина Fmax соответствуют ситуации, когда тележка крана максимально приближена к подкрановой балке, и при этом поднимается максимальный груз. В этот момент на противоположной стороне моста крана колеса оказывают давление силой Fmin, которая вычисляется по формуле

.

Максимальное давление вычисляется по формуле

Dmax = y gf Fmax Syi = 1, 1´ 0, 85´ 399, 5´ 4, 967= 1855, 34кН,

где для режимов работы 3К принимается y = 0, 85 (п.4.17 [1]);

gf = 1, 1 – коэффициент надежности по нагрузке для крановых нагрузок (п.4.8 [1]);

Syi = 4, 967 – сумма ординат линий влияния (рис. 7).

Давление на противоположной стороне моста крана:

Dmin = y gf Fmin Syi = 1, 1´ 0, 85´ 108´ 4, 967= 501, 57

Силы Dmax и Dmin действуют с эксцентриситетом e = hн /2 = 0, 625 м относительно центра тяжести сечения нижней части колонны и создают изгибающие моменты:

Mmax = Dmax ´ e = 1855, 34 ´ 0, 625 = 1159, 59 кН´ м,

Mmin = Dmin ´ e = 501, 57 ´ 0, 625 = 313, 48 кН´ м.

Нагрузки, соответствующие максимальному давлению кранов на левую колонну, показаны на рис. 8.

 

 

Загружение №6. Крановая нагрузка на правую колонну

Нагрузки, соответствующие максимальному давлению кранов на правую колонну, являются зеркальным отображением загружения №5 (рис. 9).

 

Загружение №7. Тормозная нагрузка на левую колонну

Аналогично крановым нагрузкам от вертикального давления колес, тормозные горизонтальные нагрузки через колеса крана передаются на подкрановые конструкции и далее на колонну рамы. Это позволяет вычислять тормозные нагрузки аналогично нагрузке Dmax с заменой силы Fmax на горизонтальную силу Tmax.

Нормативная величина силы от торможения тележки с грузом вычисляется по п.4.4 [1]:

= 14, 3 кН,

где b = 0, 05 – коэффициент перехода от вертикальных нагрузок к горизонтальным для тележки с гибким подвесом груза (на тросах).

Тормозная нагрузка вычисляется по формуле

T = y gf Tmax Syi = 1, 1´ 0, 85´ 14, 3´ 4, 967= 66, 41 кН

и прикладывается к каркасу в уровне кранового рельса (к узлу 25).

Тормозная нагрузка на левую колонну показана на рис. 10. Она может быть направлена как внутрь, так и наружу пролета рамы, и поэтому должна быть описана как знакопеременная.

 

Загружение №8. Тормозная нагрузка на правую колонну

Тормозная нагрузка на правую колонну показана на рис. 11.

 

Рассмотрим последовательность назначения сечений.

 

Ригель (ферма)

Ригель рассматривается как элемент, имеющий сквозное сечение, составленное из поясов в виде парных уголков.

1. Равномерно распределенная нагрузка на ферму от собственного веса покрытия:

q = g1 Sf = 2, 7´ 12 = 32, 4 кН/м.

2. Изгибающий момент в середине пролета ригеля как в простой балке:

  • от собственного веса покрытия: M1 = q L2 / 8 = 32, 4´ 362 / 8 = 5848, 8кН´ м;
  • от снеговой нагрузки по варианту 1: M2 = P1 ´ 18+ P2 ´ 15+ P2 ´ 12+ P2´ 9+ P3´ 6+ P4 ´ 3= 21, 816 ´ 18+43, 632´ 15+ 43, 632´ 12+ 43, 632´ 9+ 39, 096´ 6+ 34, 56 ´ 3= 2301, 7 кН´ м;
  • от снеговой нагрузки по варианту 2: M3 = P1 ´ 18+ P2 ´ 15+ P2 ´ 12+ P3´ 9+ P4 ´ 6= 21, 6 ´ 18+ 43, 2 ´ 15+ 43, 2 ´ 12+ 75, 6´ 9+ 54 ´ 6= 2563, 2 кН´ м.

3. Максимальный изгибающий момент: Mmax = M1 + max(M2, M3) =5848, 8+2563, 2= 8412 кН´ м.

4. Момент инерции сечения ригеля: = 114271, 76 см4,

где hr = 315 см – высота фермы;

Ry – расчетное сопротивление стали по пределу текучести, равное 24 кН/см2 для стали С245;

m – коэффициент, учитывающий влияние уклона верхнего пояса и деформативности решетки на жесткость фермы, и равный 0, 9 при уклоне, равном нулю.

5. Площадь сечения ригеля: = 176, 35 см2. Для фермы эта величина равна суммарной площади сечения поясов.

6. Для ферм, проектируемых из тавров, площадь сечения одного тавра пояса равна Ar / 2, что составляет 88, 17 см2. В сортаменте выбираем тавр Т 25ШТ3 с площадью сечения 99, 04 см2 и получаем поперечное сечение поясов Т 25ШТ3. Сечение для опорных раскосов фермы проектируем из спаренных уголков с площадью сечения 88, 17 см.2 Для этого подходит равнополочный уголок ∟ 200´ 12 и получаем сечение ù é 200´ 12 с площадью сечения 94, 2 см2.

7. Для других элементов решетки можно принять площадь сечения одного уголка несколько меньше, чем для поясов, например, 0, 75 ´ 44, 08 см2 = 33, 06 см2.

В соответствии с этой величиной назначаем сечение ù é 150´ 12.

Подкрановая (нижняя) часть колонны

Сечение нижней части колонны для статических расчетов примем симметричным в виде двух двутавров.

1. Опорная реакция фермы как простой балки:

· от собственного веса покрытия: R1 = q L / 2= 32, 4´ 36 / 2 = 583, 2 кН;

· от снеговой нагрузки по варианту 1: R2 = (SPi)/2 = (2P1 +6 P2 +2 P3 +3 P4)/2 = 243, 648 кН;

· от снеговой нагрузки по варианту 2: R3 = (SPi)/2= (2P1 +4 P2 +2 P3 +2 P4)/2 = 237, 6 кН.

2. Нагрузка на колонну от постоянной и снеговой нагрузок:

N = (R1 + P1) + max[(R2 + P2), (R3 + P3)] =583, 2+243, 65= 826, 85 кН.

3. Момент инерции сечения нижней части колонны: = 909714, 76 см4,

где hn = 125 см – высота сечения нижней части колонн (расстояние между центрами тяжести ветвей);

k2 = 3, 5 – коэффициент, принимаемый в зависимости от шага колонн:

k2 = 3, 2…3, 8 при Sk = 12 м;

k2 = 2, 5…3, 0 при Sk = 6 м.

4. Площадь сечения нижней части колонны: = 232, 89 см2. По сортаменту принимаем двутавр №90Б1 с площадью поперечного сечения 247, 1 см2. Таким образом, для статических расчетов принимаем нижнюю часть колонны в виде двутавров №90Б1. Расстояние между их центрами тяжести равно 1250 мм.

 

Надкрановая (верхняя) часть колонны

Сечение верхней части колонны принимается в виде двутавра.

Момент инерции сечения верхней части колонны: = 150150, 7 см4,

где k1 = 1, 9 – коэффициент, учитывающий то, что высота сечения (hv и hn) различным образом влияет на момент инерции сквозного сечения нижней части колонны и на момент инерции двутаврового сечения верхней части.

По сортаменту принимаем двутавр №80Б1 с моментом инерции поперечного сечения 199500 см4.

 







© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.