Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Введение. Содержание Введение .. Глава 1






Содержание

Введение………………………………………………………………………..  
Глава 1. Газотурбинные установки…………………………………………..  
1.1 Принцип работы газотурбинных установок……………………..  
Глава 2. Газотурбинные электростанции…………………………………….  
2.1 ГТЭ комбинированного цикла……………………………………  
Список литературы……………………………………………………………  

Введение

 

В 1791 английский изобретатель Дж. Барбер впервые предложил идею создания ГТД с газогенератором, поршневым компрессором, камерой сгорания и газовой турбиной. Русский инженер П. Д. Кузьминский в 1892 разработал проект, а в 1900 построил ГТД со сгоранием топлива при постоянном давлении, предназначенный для небольшого катера. В этом ГТД была применена многоступенчатая газовая турбина. Испытания не были завершены из-за смерти Кузьминского. В 1900-04 немецкий инженер Ф. Штольце пытался создать ГТД, но неудачно. В 1906 французский инженер Р. Арманго и Ш. Лемаль построили ГТД, работавший на керосине, со сгоранием топлива при постоянном давлении, но из-за низкого кпд он не получил промышленного применения. В 1906 русский инженер В. В. Караводин спроектировал, а в 1908 построил бескомпрессорный ГТД с 4 камерами прерывистого сгорания и газовой турбиной, который при 10 000 об/мин развивал мощность 1, 2 квт (1, 6 л. с.). В 1908 по проекту немецкий инженера Х. Хольцварта был построен ГТД прерывистого горения. К 1933 кпд ГТД с прерывистым горением составлял 24%, однако они не нашли широкого промышленного применения. В России в 1909 инженер Н. В. Герасимов получил патент на ГТД, который был использован им для создания реактивной тяги (турбореактивный ГТД); в 1913 М. Н. Никольской спроектировал ГТД мощностью 120 квт (160 л. с.) с трёхступенчатой газовой турбиной; в 1923 В. И. Базаров предложил схему ГТД, близкую к схемам современных турбовинтовых двигателей; в 1930 В. В. Уваров при участии Н. Р. Брилинга спроектировал, а в 1936 построил ГТД с центробежным компрессором. В 30-е гг. большой вклад в создание авиационных ГТД внесли советский конструктор А. М. Люлька (ныне академик АН СССР), английский изобретатель Ф. Уиттл, немецкий инженер Л. Франц и др. В 1939 в Швейцарии был построен и испытан ГТД мощностью 4000 квт (5400 л. с.). Его создателем был словацкий учёный А. Стодола. В 1939 в Харькове, в лаборатории, руководимой В. М. Маковским, изготовлен ГТД мощностью 736 квт (1000 л. с.). В качестве топлива использован газ, получаемый при подземной газификации угля. Испытания этого ГТД в Горловке были прерваны Великой Отечественной войной. Большой вклад в развитие и совершенствование ГТД внесли советские учёные и конструкторы: А. Г. Ивченко, В. Я. Климов, Н. Д. Кузнецов, И. И. Кулагин, Т. М. Мелькумов, А. А. Микулин, Б. С. Стечкин, С. К. Туманский, Я. И. Шнеэ, Л. А. Шубенко-Шубин и др. За рубежом в 40-е гг. над созданием ГТД работали фирмы «Юнкерс», «БМВ» (Германия), «Бристол Сидли», «Роллс-Ройс» (Великобритания), «Дженерал электрик» и «Дженерал моторс» (США), «Рато» (Франция) и др.


 

ГЛАВА 1. ГАЗОТУРБИННЫЕ УСТАНОВКИ (ГТУ)

 

В процессе развития малой энергетики всё больше внимания уделяется газовым турбинам малой и средней мощности. Области применения газотурбинных установок практически не ограничены: нефтегазодобывающая промышленность, промышленные предприятия, муниципальные образования. Положительным моментом использования ГТУ в муниципальных образованиях является то, что содержание вредных выбросов в выхлопных газах NOх и CO находится на уровне 25 и 150 ppm соответственно (для сравнения у ГПА в несколько раз больше) позволяет устанавливать данное оборудование в черте города в жилом районе. Отдельное внимание стоит уделить возможности надстройки существующих котельных газотурбинными установками, что позволяет обеспечить надежное электроснабжение собственных нужд и снизить удельный расход топлива. Применение ГТУ в Мини-ТЭС экономически оправдано в комплексе с утилизационными контурами. Это обусловлено достаточно низким электрическим КПД газовой турбины 22…37%. При этом соотношение вырабатываемой электрической энергии и тепловой составляет 1: 1, 5; 2, 5. В зависимости от потребностей ГТУ комплектуется паровыми или водогрейными котлами-утилизаторами, что позволяет получать либо пар (низкого, среднего, высокого давления) для технологических нужд, либо горячую воду с температурой выше 140 °С. Выработанное тепло может быть использовано для производства холодной воды. В этом случае, как потребителя тепловой нагрузки, подключают абсорбционную холодильную машину (тригенерация). В составе комплексной выработки энергии общий КПД станции возрастает до 90%. Максимальная эффективность использования ГТУ обеспечивается при длительной работе с максимальной электрической нагрузкой. В диапазоне мощностей порядка 10 МВт существует возможность использования комбинированного цикла газовых и паровых турбин. Это позволяет существенно повысить эффективность использования станции, увеличивая эл. КПД до 47%.

ГТУ предназначены для эксплуатации в любых климатических условиях как основной или резервный источник электроэнергии и тепла для объектов производственного или бытового назначения. Строительство таких электростанций в отдаленных (особенно северных) районах позволяет получить значительную экономию средств за счет исключения издержек на строительство и эксплуатацию протяженных линий электропередач, а для центральных районов - повысить надежность электрического, теплового снабжения как отдельных предприятий или организаций, так и территорий в целом.

 

 

Рис. 1 - Газотурбинная установка

 

За основу строительства электростанций ГТУ взята концепция блочно-модульного построения. Электростанции состоят из максимально унифицированных отсеков и модулей, что позволяет в сжатые сроки создавать новые модификации агрегатов, а также совершенствовать, модернизировать устаревшие объекты с минимальными затратами.

Блочно-модульное исполнение обеспечивает высокий уровень заводской готовности газотурбинных электростанций. Они монтируются с применением универсальных грузоподъемных монтажных средств. Размеры блоков не превышают транспортные железнодорожные габариты.

Степень автоматизации газотурбинной электростанции позволяет отказаться от постоянного присутствия обслуживающего персонала в блоке управления. Контроль работы станции может осуществляться с главного щита управления, поставляемого вместе с комплектом оборудования энергоблока. Во время эксплуатации электростанции ее работу обеспечивают три человека: оператор, дежурный электрик, дежурный механик. При возникновении аварийных ситуаций для обеспечения безопасности персонала, сохранности систем и агрегатов энергоблока предусмотрена надежная система защиты.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.