Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Эквивалентные множества. Счётные множества






Два множества называются эквивалентными, если между ними можно установить взаимно-однозначное соответствие. Проще всего проверить эквивалентность конечных множеств. Для двух конечных множеств взаимно-однозначное соответствие можно установить лишь в случае, когда они имеют одинаковое количество элементов. Поэтому конечные множества эквивалентны тогда и только тогда, когда они имеют поровну элементов. Для бесконечных множеств не имеет смысла говорить о числе элементов. Однако и среди бесконечных множеств можно найти эквивалентные.

Рассмотрим множество всех натуральных чисел . Любое бесконечное подмножество А множества N эквивалентно самому множеству N. В самом деле, элементы этого подмножества можно расположить в порядке возрастания и каждому поставить в соответствие его порядковый номер (перенумеровать). Получим . Так как элементов в подмножестве А бесконечно много, этот процесс можно неограниченно продолжать. Тем самым устанавливается взаимно-однозначное соответствие между А и N. Нетрудно догадаться, что множество А представляет собой числовую последовательность. Таким образом, все числовые последовательности, содержащие различные элементы, эквивалентны множеству натуральных чисел N.

Бесконечные множества, эквивалентные множеству натуральных чисел N, называются счетными множествами. Иными словами, если элементы бесконечного множества можно перенумеровать, то такое множество называется счетным. Самым простым примером счётного множества является само множество N натуральных чисел.

Основные теоремы о счётных множествах.

Теорема 1. Каждое бесконечное подмножество А счётного множества В счётно.

Теорема 2. Объединение конечного или счётного множества счётных множеств счётно.

 


 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.