Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Организмов






Генный механизм передачи наследственной информации изучается генетикой. Успехи генетики обусловили раскрытие механизма воспроизводства и эволюции жизни на молекулярном уровне. Истоком генетики считают открытие Г. Менделем в 1865 г. корпускулярной природы наследственности. В 1909 г В. Иогансен ввел основополагающие термины генетики (ген генотип и др.) и придал модели Менделя четкую форму, в то время понятие «ген» не связывалось с каким-то материаль­ным объектом клетки; ген обозначал просто единицу наследственного отличия. Отождествление гена с частью хромосом было осуществлено позже американским биологом Т. Морга­ном. Развитие молекулярной генетики раскрыло химическую природу генов, как части молекулы ДНК с особым набором мономеров-нуклеотидов, последовательность которых обра­зует генетический код. Расшифровка структуры генетического кода показала его триплетность, однозначность и универсаль­ность. Триплетность кода означает, что каждая из 20 амино­кислот зашифрована последовательно — кодоном — из трех нуклеотидов. Универсальность означает, что код един для всех живых организмов планеты, то есть одни и те же кодоны ко­дируют одни и те же 20 аминокислот всех живых организмов.

Важнейшей составляющей процесса развития любого орга­низма является воспроизводство в клетках по определенному шаблону веществ и структур, необходимых для последующего деления клетки. Воспроизводство живых систем и сохранение видовых признаков обеспечивается системой воспроизведения организма. Она в закодированном виде содержит полную ин­формацию для построения белка из запасенного клеткой орга­нического материала. Свои функции система воспроизведения осуществляет посредством ДНК и РНК. Первая хранит генети­ческую информацию, заложенную вдоль собственной цепи. Вторая способна ее считывать, переносить в среду, содержа­щую необходимые для синтеза белка исходные материалы, и строить из них белковые молекулы.

Процесс воспроизводства состоит из трех стадий: реплика­ции, транскрипции, трансляции. Репликация — это удвоение молекулы ДНК, необходимое для последующего деления клет­ки. Транскрипция представляет собой перенос кода ДНК пу­тем образования одноцепочечной информационной молеку­лы РНК на одной из двух нитей ДНК. Информационная мо­лекула РНК — это копия части ДНК, группы рядом лежащих генов, несущих информацию о структуре белков, необходи­мых для выполнения одной функции. Далее происходит транс­ляция — синтез белка на основе генетического кода информа­ционной РНК.

Таким образом, главное в механизме самовоспроизведения клеток — свойство ДНК самокопироваться и строго равноцен­ное деление репродуцированных хромосом. После этого клетка может делиться на две совершенно идентичные. Так как каж­дая клетка многоклеточного организма происходит от одной из зародышевой как результат последовательных делений, то все клетки имеют одинаковый набор генов.

В настоящее время перед наукой открылась возможность не только изучать генетический механизм, но и влиять на саму наследственность на молекулярном уровне. Эту возможность реализует новое направление молекулярной биологии — ген­ная инженерия, разрабатывающая методики целенаправлен­ного манипулирования информационными макромолекулами живых систем.

Первым с помощью генной инженерии был получен инсулин, затем интерферон, потом гормон роста. Позже, бла­годаря вмешательству в конструкцию ДНК, были изменены качества десятков пород животных и сортов растений, многие из которых внедрены в сельскохозяйственное производство. Например, уже используются сорта генетически модифицированного картофеля, устойчивые против бича карто­фельных плантаций — колорадского жука. Необходимо отметить, что пока не ясны возможные отдаленные последствия употребления в пищу сельхозпродуктов, полученных с исполь­зованием генной инженерии.

Есть и другие направления практического использования генетики. Так, оказалось, что с помощью генетической экс­пертизы можно с чрезвычайно высокой точностью устанавливать родство конкретных людей, выполнять иденти­фикацию останков погибших людей. Эти возможности на­ходят широкое применение в повседневной юридической практике.

Сразу же после своего возникновения генная инженерия стала не только одним из самых перспективных направлений прикладной биологии, но также источником совершенно но­вых и глубоких этических, моральных и юридических про­блем.

Одним из ярких примеров такого рода проблем является вопрос о морально-этической оценке опытов по так называ­емому клонированию (созданию точной генетической копии) живых организмов. В связи с намеченными в США на перс­пективу исследованиями клонирования человека этот вопрос перерос в конце 1997 — начале 1998 г. в острую правовую проблему, носящую к тому же международный характер. В январе 1998 г. в Париже 19 европейских государств подписа­ли протокол соглашения о запрете на клонирование человека. В перечне участников соглашения по разным причинам не оказалось ряда стран с высокоразвитой генетикой. В том числе — Великобритании (здесь впервые было практически осуществлено клонирование животного, и эта страна не хо­тела бы утратить свои приоритетные позиции в данном на­правлении естествознания), а также США, Германии, Рос­сии.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.