Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Химико-термическая обработка металлов и сплавов






Студент должен

Знать:

· Основные процессы химико-термической обработки;

· Назначение процессов химико-термической обработки

 

Химико-термическая обработка - процесс химического и термического воздействия на поверхностный слой стали с целью изменения состава, структуры и свойств.

Химико-термическая обработка повышает твердость поверхности ста­ли, ее износостойкость, коррозионную стойкость, кислотоустойчивость и другие свойства. Химико-термическая обработка нашла широкое применение в машиностроении, так как является одним из наиболее эффективных методов упрочнения стальных деталей для повышения их долговечности.

Химико-термической обработке можно подвергать различные по размерам и форме детали и получать обработанный слой одинаковой тол­щины. При химико-термической обработке за счет изменения химического состава поверхностного слоя достигается большое различие свойств поверхности и сердцевины детали. Недостатком процессов химико-термической обработки является их малая производительность.

Химико-термическая обработка основана на диффузии атомов различных химических элементов в кристаллическую решетку железа при нагреве в среде, содержащей эти элементы.

Химико-термическая обработка состоит из трех процессов: диссоциации - получения насыщающего элемента в активном атомарном со­стоянии; абсорбции - поглощения активных атомов насыщающего элемента поверхностью металла; диффузии - перемещения атомов насыщающего элемента с поверхности в глубь металла.

Необходимо, чтобы скорости всех трех процессов были обязательно согласованы, а для абсорбции и диффузии требуется, чтобы насыщающий элемент взаимодействовал с основным металлом, образуя либо твердые растворы, либо химические соединения. Химико-термическая обработка невозможна, если основной металл и насыщающий элемент образуют механические смеси. Глубина проникновения диффундирующего элемента зависит от температуры и продолжительности насыщения, а также от состава стали, главным образом наличия легирующих элементов.

Наиболее распространенными видами химико-термической обработки является цементация (насыщение поверхностного слоя углеродом, цианирование (углеродом и азотом), борирование (бором), алитирование (алюминием) и др.

Цементация - процесс химико-термической обработки, заключающийся в диффузионном насыщении поверхностного слоя углеродом при нагреве в соответствующей среде. Цементация придает поверхностному слою высокую твердость и износостойкость, повышает предел выносливости при изгибе и кручении. Цементируют детали, работающие в условиях трения, при больших давлениях и циклических нагрузках- шестерни, поршневые пальцы, распределительные валы и др.

При цементации деталь нагревают без доступа воздуха до 930—950°С в науглероживающей среде (твердой, жидкой или газообразной), выдерживают при этой температуре в течение нескольких часов, а затем медленно охлаждают. После этого ее подвергают нормализации, закалке и отпуску.

Науглероживающей средой служат твердые карбюризаторы (мелкий древесный уголь в смеси с углекислым барием), жидкие соляные ванны (смесь поваренной соли, углекислого натрия, цианистого натрия, хлористого бария) и газы, содержащие углерод.

Азотирование - процесс химико-термической обработки, заключающийся в насыщении поверхностного слоя азотом для придания этому слою высокой твердости, износостойкости или устойчивости против коррозии.

Твердость азотированного слоя выше,.чем цементованного, и сохраняется до высоких температур 400—600°С, тогда как твердость цементованного слоя с мартенситной структурой сохраняется лишь до 200—250°С. Азотированию подвергают легированные стали, содержащие алюминий, хром, титан, например 35ХМЮА, 40Х, 18ХГТ, 40ХНМА и др.

Перед азотированием улучшают механические свойства, деталей, подвергая их закалке и высокому отпуску. Толщина азотированного слоя со­ставляет 0, 2—0, 6 мм. Азотированный слой хорошо шлифуется и полируется. Азотированию подвергают детали автомобилей, (шестерни, коленчатые валы), а также штампы, пресс-формы и др. Азотирование приводит к небольшому увеличению размеров. Поэтому после азотирования детали подвергают окончательному шлифованию (например, повторно шлифуют шейки коленчатых валов) со снятием слоя 0, 02—0, 03 мм.

Азотирование обычно проводят в среде аммиака при температуре 500—600°С. Аммиак разлагается с выделением активного азота в атомарном состоянии: 2NH3→ 2N + 6H. При этих температурах в герметически закрытом муфеле, вставленном в печь, азот внедряется в поверхностный слой стали и вступает в химическое взаимодействие с легирующими элементами, образуя нитриды хрома, молибдена, вольфрама и др. Нитриды легирующих элементов повышают твердость стали до HRC 70. Обычные кон­струкционные стали после азотирования имеют меньшую твердость, а твердость углеродистых сталей совсем невысока, так как в них не образуются специальные нитриды. Поэтому углеродистые стали подвергают только антикоррозионному азотированию.

Нитроцементация - процесс химико-термической обработки, заключающийся в насыщении поверхностного слоя одновременно азотом и углеродом в газовой среде. Основой газовой среды служит эндотермический газ (эндогаз), состоящий из азота (40%), водород (40%) и окиси углерода (20%). При нитроцементации детали нагревают до 850—870°С в среде эндогаза с добавлением природного газа (5—15%) и аммиака (5%) и выдерживают в течение 4-10 ч. Глубина нитроцементованного слоя 0, 2—0, 8 мм. Она зависит от температуры процесса и времени выдержки. С повышением температуры содержание азота в слое уменьшается, а углерода - до определённой темпера туры возрастает, а затем несколько уменьшается.

После нитроцементации детали подвергают закалке и низкому отпуску при 160-180°С до твердости HRC 58-64.

Нитроцементуют детали сложной формы, подвергающиеся износу (зубчатые колеса), склонные к короблению. Нитроцементация имеет существенные преимущества перед газовой цементацией благодаря более низкой температуре. процесса (на 70—90°С) и меньшей толщине слоя, что обеспечивает меньшие деформации и коробление детали. Нитроцементацию широко применяют в автомобильном и тракторном производстве.

Цианирование - процесс химико-термической обработки, заключающийся в насыщении поверхностного слоя одновременно азотом и углеродом в расплавленных солях, содержащих цианистый натрий NaCN.

Для получения слоя толщиной до 0, 3 мм цианирование ведут при 820- 860°C (низкотемпературное цианиронание) в течение 0, 5—1, 5 ч. Затем детали закаливают непосредственно из ванны и подвергают низкому отпуску (180-200°С). Твердость цианированного слоя после термообработки НRC 58-62. Низкотемпературному цианированию подвергают детали из среднеуглеродистых сталей и инструменты из быстрорежущей стали. Низкотемпературное цианирование применяют для упрочнения мелких деталей.

Цианировэнный слой по сравнению с цементованным имеет более высокую износостойкость.

Для получения слоя большей толщины (0, 5- 2 мм) применяют высокотемпературное цианирование при 930—960°С. Продолжительность процесса 1, 5—6 ч. После цианирования детали охлаждают на воздухе, а затем для измельчения зерна закаливают и подвергают низкому отпуску. Высокотемпературное цианирование применяют для деталей из средне- и низкоуглеродистых, а также легированных сталей.

Процессы цианирования в сравнении с цементацией более производительны, обеспечивают меньшую деформацию и коробление деталей сложной формы и большую сопротивляемость износу и коррозии. Недостаток цианирования - высокая стоимость и ядовитость цианистых со­лей.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.