Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Техника безопасности. обеспечение электробезопасности






 

Техника безопасности (ТБ) – система организационных и технических мероприятий и средств, обеспечивающих защиту людей от воздействия опасных и вредных факторов. Электробезопасность – защита от электрического тока, электрической дуги, статического и атмосферного электричества.

Т.к. на предприятиях связи основные производственные процессы связаны с эксплуатацией и обслуживанием электроустановок, то вопросы обеспечения электробезопасности являются самыми важными, поэтому данный материал рассматривается достаточно объемно.

 

3.1 Воздействие электрического тока на организм человека

 

Проходя через тело человека, электрический ток оказывает на него биологические (сокращение мышц, паралич дыхания и сердца, раздражение и возбуждение нервных окончаний), электролитические (разложение крови и плазмы), термические (ожоги, нагрев тканей и биологических сред) и механические (разрыв и расслоение тканей) воздействия.

При воздействии электрических тока или дуги могут возникнуть электрические удары – внутренние, общие поражения организма человека, связанные: с едва ощутимым сокращением мышц; судорожными сокращениями мышц, сопровождающимися сильными болями без потери сознания; потерей сознания и нарушением сердечной деятельности и (или) дыхания; потерей сознания, но с сохранившимся дыханием и работой сердца; состоянием клинической смерти в результате фибрилляции сердца или асфиксии. При местном воздействии электрического тока возникают электротравмы: контактные, дуговые или смешанные электроожоги (четыре степени); металлизация кожи частицами расплавившегося металла; электрические знаки (метки различной формы и цвета, безболезненные, исчезающие со временем); электроофтальмия (воспаление наружной оболочки глаз); механические травмы, вызванные непроизвольным сокращением мышц. Тяжесть поражения электрическим током зависит от силы тока, сопротивления тела человека, пути и времени протекания тока через организм, рода (переменный или постоянный) и частоты тока, условий среды и индивидуальных особенностей человека.

Эквивалентную схему при протекании тока через тело человека можно представить в виде последовательно включенных сопротивлений внутренних органов и кожи (эпидермы) в месте контакта (на входе и выходе) с источником тока (рисунок 3.1). Емкость человеческого тела незначительна, и ее не учитывают в практических расчетах. Сопротивление тела человека при различных расчетах, связанных с обеспечением безопасности, принимают активным и равным 1000 Ом, хотя оно и изменяется в широких пределах. Наибольшим сопротивлением обладает наружный слой кожи толщиной порядка 0, 2 мм, состоящий из мертвых ороговевших клеток, наименьшим – спинно-мозговая жидкость. Сухая, чистая, неповрежденная кожа имеет сопротивление значительно больше, чем влажная, с большим pH, потная кожа. С увеличением силы тока и временем его протекания сопротивление тела человека уменьшается. Наибольшая опасность возникает при прохождении тока через головной мозг, легкие, сердце. Наиболее опасным является ток промышленных частот (20 – 1000 Гц). Постоянный ток напряжений 250 – 300 В менее опасен, чем переменный. Некоторые заболевания человека (сердечно сосудистые, кожные) делают его восприимчивым к электрическому току. Поэтому к обслуживанию электроустановок допускаются лица, прошедшие медицинское освидетельствование.

Рисунок 3.1 – Схема замещения тела человека

По степени физиологического воздействия можно выделить следующие токи промышленной частоты воздействием более 1 секунды:

0, 5 – 1, 5 мА – пороговый ощутимый ток (т.е. наименьшее значение тока, которое человек начинает ощущать);

10 – 20 мА – пороговый не отпускающий ток (когда из-за судорожного сокращения рук человек самостоятельно не может освободится от токоведущих частей);

80 – 100 мА – пороговый фибрилляционный ток (расчетный поражающий ток), вызывающий неритмичные судорожные сокращения сердца, называемые фибрилляцией.

Поражение электрическим током возможно лишь в состоянии полного покоя сердца человека. При продолжительности воздействия не более 10 минут в сутки в неаварийном режиме при нормальных метеорологических условиях предельно допустимые значения тока: частотой 50 Гц равно 0, 3 мА, частотой 400 Гц – 0, 4 мА, постоянного тока – 1 мА.

 

Классификация помещений (условий работ) по опасности поражения электрическим током

 

Окружающая среда оказывает существенное влияние на электробезопасность. Потому помещения в отношении опасности поражения электрическим током различают:

1) без повышенной опасности, в которых отсутствуют условия, создающие повышенную или особую опасность;

2) с повышенной опасностью, характеризующиеся наличием одного из следующих признаков:

- относительной влажностью, длительно превышающей 75 %;

- токопроводящей пыли;

- токопроводящих полов (земляных, металлических, железо-бетонных, кирпичных и т.п.);

- высокой температуры, длительно превышающей +35 0С;

- возможности одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппараратам, с одной стороны, и к металлическим корпусам оборудования – с другой;

3) с особой опасностью, в которых возможны:

- особая сырость (влажность близкая к 100 %);

- химически активная (агрессивная) среда;

- наличие одновременно двух или более признаков условий повышенной опасности.

Территорию размещения наружных электроустановок (на открытом воздухе) относят к особо опасным помещениям. Выделяют работы в особо неблагоприятных условиях (в сосудах, котлах с ограниченным перемещением оператора). Условия производства работ предъявляют определенные требования к питанию таких потребителей, как электроинструмент, переносные светильники, светильники местного освещения, в помещениях особо опасных и с повышенной опасностью они питаются напряжением не более 50 В, а в особо неблагоприятных условиях – не более 12 В. Для уменьшения номинала напряжения используют понижающие трансформаторы. Автотрансформаторы использовать категорически запрещено.

 

Производство работ в электроустановках

 

Работы в электроустановках в отношении мер безопасности подразделяются на выполняемые:

- со снятием напряжения;

- без снятия напряжения на токоведущих частях и вблизи них.

К работам со снятием напряжения относятся работы, выполняемые в электроустановках (или части ее), в которой с токоведущих частей снято напряжение.

К работам без снятия напряжения на токоведущих частях и вблизи от них относятся работы, выполняемые непосредственно на этих частях, а также такие, которые выполняются на расстояниях от токоведущих частей менее допустимых.

 

Классификация электроустановок

 

Электроустановка – совокупность машин, механизмов, аппаратов, линий передач, т.е. все то, что преобразует, распределяет и передает электрические колебания и токи.

Электроустановки делятся на установки:

- напряжением до 1000 В;

- напряжением свыше 1000 В.

Требования к эксплуатации и безопасности обслуживания этих электроустановок различны.

 

3.5 Классификация электрических сетей

По роду тока сети бывают переменного и постоянного тока; по конструкции сети – с малой или большой емкостью; по количеству фаз – однофазные и трехфазные; по количеству проводов – однопроводные, двухпроводные, трехпроводные, четырехпроводные и пятипроводные; по режиму нейтрали (полюса) – с заземленной или изолированной нейтралью (полюсом).

Сети с малой емкостью чаще всего выполняются воздушными (погонная емкость которых ), сети с большой емкостью – кабельными ().

В зависимости от прикосновения человека к сети разделяют однополюсное (человек, стоящий на земле, касается одной рукой неизолированного провода) и двухполюсное прикосновение человека. Наиболее опасным является двухполюсное прикосновение.

 

Анализ прикосновения человека к электрической сети

Для упрощения примем, что:

- сеть с малой емкостью (при этом сопротивление изоляции, значительно меньше емкости сопротивления изоляции );

- сопротивление пола и сопротивление обуви равны нулю;

- сопротивление изоляции каждого провода относительно земли равны, т.е. .

Для однопроводной сети с заземленным полюсом («земля» используется в качестве второго провода) ток, протекающий при однополюсном прикосновении человека к неизолированному (токоведущему) проводу , можно определить по формуле (рисунок 3.2) .

В любом случае следует учитывать, что в каждый данный момент времени ток протекает от «плюса» до минуса источника напряжения по пути наименьшего сопротивления!

Для двухпроводной сети с изолированными от земли проводами (рисунок 3.3) имеем:

Рисунок 3.3

а) В случае двухполюсного прикосновения , т.е. ток опасный;

б) В случае однополюсного прикосновения при хорошем состоянии изоляции проводов (по нормам 500 кОм) человек находится под защитой , т.к. ;

в) В случае однополюсного прикосновения к проводу 1 и замыкании другого провода 2 на землю , т.е. в случае нарушении изоляции через человека будет протекать опасный ток. Такой режим называется аварийным.

Для двухпроводной сети с заземленным полюсом (рисунок 3.4) имеем:

Рисунок 3.4

а) В случае исправной нагрузки () ток неопасный, т.к. , где - потери в проводе, В. По нормам ;

б) В случае короткого замыкания (к.з.) нагрузки (неверно отсоединяют потребитель от сети или неисправная нагрузка) ток становится опасным, т.к. , где .

Для трехфазной трехпроводной сети, соединенной «звездой», с изолированной нейтралью (рисунок 3.5) имеем:

Рисунок 3.5

а) эквивалентная схема соединения «звездой»,

где – напряжение фазы, В (между «н» и «к»);

– линейное напряжение, В (между «к» и «к»),

;

н – начало каждой фазы;

к – конец каждой фазы.

Соединение начал всех фаз в одну точку, называется нейтралью. Если нейтраль не имеет соединения (контакта с землей), то она называется изолированной.

б) в случае двухполюсного касания человека к фазным проводам () ток опасный, т.к.:

;

в) в случае однополюсного присоединения к фазному проводу при хорошем состоянии изоляции человек находится под защитой изоляции и через него протекает неопасный ток:

;

г) в случае однополюсного касания человека к проводу и замыкании другой фазы, например , на землю ток становится значительным, определяется линейным напряжением, опасный для жизни человека:

.

Для трехфазной трехпроводной сети с глухозаземленной нейтралью (рисунок 3.6) имеем:

Рисунок 3.6

 

а) в случае однополюсного прикосновения протекает опасный ток, равный:

,

который не зависит от состояния изоляции;

б) в случае однополюсного прикосновения к фазе и замыкания фазы на землю через человека протекает такой же ток, как и в предыдущем случае , т.к. через человека не пойдет (). Этот ток меньше, чем в аналогичном случае в сети с изолированной нейтралью.

Вывод: во всех рассмотренных случаях для уменьшения тока, протекающего через человека, следует использовать средства индивидуальной защиты (диэлектрические перчатки, галоши, боты, подставки и т.д.) и (или) контролировать исправность изоляции.

«» называется сопротивлением рабочего заземления.

Рабочее заземление – это преднамеренное соединение токоведущей части источника (в данном случае нейтрали) с землей или ее эквивалентом для создания необходимого режима работы сети. Это физическая величина, определяемая сопротивлением в месте контакта нейтрали с землей. Величина нормируется в зависимости от напряжения фазы (сети) (таблица 2.2).

Таблица 2.2

, В      
, Ом      

 

Наиболее часто используемой сетью на предприятиях связи является четырех проводная трехфазная с заземленной нейтралью и нулевым проводником. Схема подключения оборудования к такой сети с обеспечением электробезопасности обслуживающего персонала показана на рисунке 3.7.

На схеме: PEN – совмещенный нулевой проводник в электроустановках до 1000 В сочетает функции нулевого защитного PE и нулевого рабочего проводника N.

Нулевой защитный проводник PE обеспечивает зануление корпусов (металлических) оборудования.

Нулевой рабочий проводник N обеспечивает необходимый режим питания электроустановки.

FU1, …, FU6 – предохранители (плавкие вставки).

– повторное заземление нулевого проводника для обеспечения зануления оборудования в случае обрыва нулевого провода и уменьшения

Рисунок 3.7

напряжения на корпусах оборудования при коротком замыкании фазы на корпус. Обычно , но не более 30 Ом.

№1, №2 – трехфазные электроустановки (потребители).

Для уменьшения опасности поражения электрическим током можно подсоединить зануленный корпус к заземлителю ().

Если используют нулевой защитный и нулевой рабочий проводник раздельно, то такая сеть называется пятипроводной (рисунок 3.8).

Рисунок 3.8

Эти сети гармонизированы со стандартами Международной электротехнической комиссии.

Возможные условия поражения человека электрическим током

Поражение человека может произойти в следующих случаях:

1) прямое прикосновение к неизолированным токоведущим частям, находящимся под напряжением;

2) косвенное прикосновение к нетоковедущим частям, оказавшимся под напряжением;

3) прикосновение к токоведущим частям, напряжение с которых было снято, но попало на них случайно;

4) прикосновение к цепям с большим остаточным зарядом;

5) попадание в зону действия высоко вольтной дуги;

6) попадание в зону действия напряжения шага;

7) приближение к электроустановке на расстояние меньше допустимого;

8) при действии атмосферного электричества во время разряда молний;

9) при оказании первой помощи пострадавшему от электрического тока (при освобождении его от действия напряжения).

 

Технические средства и способы обеспечения электробезопасности

Номенклатура видов защиты

 

При прямых прикосновениях необходимо применять следующие технические способы и средства:

- защитные оболочки;

- защитные ограждения (временные или стационарные);

- безопасное расположение токоведущих частей;

- изоляция токоведущих частей;

- малое напряжение;

- защитное отключение;

- предупредительная сигнализация, блокировка, маркировка, знаки безопасности и плакаты.

При косвенных прикосновениях применяют:

- защитное заземление;

- зануление;

- выравнивание потенциалов;

- защитное отключение;

- изоляцию нетоковедущих частей;

- электрическое разделение сети;

- малое напряжение;

- контроль сопротивления изоляции;

- компенсацию токов замыкания на землю;

- средства индивидуальной защиты;

- систему защитных проводников.

 

Защитные оболочки и ограждения. Безопасное расположение токоведущих частей

 

Для защиты от случайного прикосновения к неизолированным токоведущим частям или приближения к ним на опасное расстояние они располагаются на недоступной высоте или в недоступном месте. Если эти части доступны для человека, они закрываются временными или стационарными, сплошными или сетчатыми ограждениями, обеспечивающими частичную защиту от прикосновения. Токоведущие части могут заключаться в оболочки (корпуса). При этой защите должны быть соблюдены все установленные правилами изоляционные расстояния между человеком, ограждением или оболочкой и токоведущими частями.

 

Изоляция токоведущих и нетоковедущих частей и рабочего места

 

Различают следующие виды изоляции токоведущих частей: рабочая, дополнительная, усиленная, двойная.

Рабочая изоляция обеспечивает нормальную работу и защиту электроустановок от поражения электрическим током

Дополнительная изоляция предусмотрена наряду с рабочей для защиты от поражения электрическим током в случае повреждения рабочей изоляции.

Двойной называется изоляция, состоящая из рабочей и дополнительной. Материалы, используемые для рабочей и двойной изоляции имеют различные свойства, что делает маловероятным одновременное их повреждение.

Усиленная изоляция – это улучшенная рабочая изоляция, обеспечивающая такую же степень защиты, как двойная, но конструктивно выполненная так, что каждую из составляющих изоляции испытать нельзя.

Изоляция рабочего места предусматривает изоляцию пола, настила, площадки, металлических деталей в области рабочего места, потенциал которых отличается от потенциалов токоведущих частей, и прикосновение к которым является предусмотренным или возможным.

Изоляция нетоковедущих частей осуществляется путем покрытия частей изоляционными материалами (лаками, красками).

 

3.8.4 Малое напряжение

Малое напряжение применяется для питания ручного электроинструмента, ручных светильников в помещениях особой и повышенной опасности и т.д. Малым называется номинальное напряжение не более 50 В переменного тока и не более 110 В постоянного тока.

 

Сигнализация, блокировка, знаки безопасности

 

Сигнализация (звуковая, световая) применяется в дополнение к другим средствам и способам защиты. Она предупреждает о наличии напряжения на электроустановке. Имеются устройства, сигнализирующие об опасности недопустимого приближения к токоведущим частям под напряжением.

Блокировка (механическая и электрическая) исключает доступ к токоведущим частям, пока с них не снято напряжение, либо обеспечивается автоматическое снятие напряжения при появлении возможности прикосновения или опасного приближения к токоведущим частям.

Маркировка – это надписи, буквенно-цифровые и цветовые обозначения элементов, устройств, проводов (например, нулевой защитный проводник должен иметь голубую расцветку), введенные для их легкого распознавания.

Плакаты и знаки безопасности относятся к электрозащитным средствам. По назначению делятся на предупреждающие («Стой Напряжение », «Испытание. Опасно для жизни », «Не влезай. Убьет!»), запрещающие («Не включать. Работают люди», «Стой! Без средств защиты проход запрещен»), предписывающие («Работать здесь», «Влезать здесь»), указательные («Заземлено»). По характеру применения плакаты могут быть постоянные и переменные. Перечень, размеры, форма, места и условия применения плакатов и знаков безопасности регламентированы правилами применения.

 

3.8.6 Контроль изоляции

Контроль изоляции может быть периодическим, непрерывным и приемосдаточным. Поддержание сопротивления изоляции на высоком уровне уменьшает вероятность замыканий на землю, на корпус и поражение людей электрическим током.

В сети с изолированной нейтралью непрерывный контроль обязателен. Для этого используют метод трех вольтметров (рисунок 3.9).

Недостаток этого способа заключается в том, что при одновременном ухудшении состояния изоляции всех фаз в одинаковое количество раз этот метод не пригоден.

Периодическая проверка производится путем измерения сопротивления изоляции мегаомметром. Измеряется сопротивление изоляции каждой фазы относительно земли. В электроустановках напряжением до 1000 В оно должно быть не ниже 0, 5 МОм. Более подробно материал разбирается на лабораторных занятиях.

Рисунок 3.9

а) при неисправном состоянии изоляции показания всех вольтметров одинаковы и равны фазному напряжению: В;

б) при замыкании одной из фаз на землю, например , ; В, т.е. показания всех вольтметров изменились.

 

Защитное заземление

 

Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением (рисунок 3.10).

Защитное заземление эффективно в сетях напряжением до 1000 В с изолированной нейтралью (полюсом). Принцип действия защитного заземления заключается в том, что человек, касающийся корпуса оборудования, находящегося под напряжением за счет короткого замыкания фазы на корпус, оказывается включенным параллельно заземлителю с сопротивлением защитного

заземления , имеющим значительно меньшее сопротивление, чем тело человека . В результате большая часть тока замыкания на землю пойдет через заземлитель (рисунок 3.10, а).

 

Рисунок 3.10

При отсутствии заземлителя весь ток пойдет через тело человека, что может привести к его поражению (рисунок 3.10, б). Для уменьшения напряжения на заземлителе, сопротивление защитного заземления нормируется. В электроустановках напряжением до 1000 В оно должно быть не более 4 Ом. Значение зависит также от мощности источника питания, удельного сопротивления грунта и эксплуатируемого оборудования. Для заземления используют искусственные и естественные заземлители. Естественные заземлители – это находящиеся в соприкосновении с землей электропроводящие металлические конструкции и коммуникации зданий и сооружений, за исключением взрыво- и пожаро-опасных (нефтепроводы и др.) Использование протяженных и разветвленных заземлителей позволяет снизить и выравнять потенциалы. Искусственные заземлители представляют собой совокупность собственно заземлителей и заземляющих проводников, называемыми заземляющим устройством.

Схема заземляющего устройства показана на рисунке 3.11.

1 – электроустановка

2 – заземляющий проводник

3 – магистральная шина

4 – соединительная полоса

5 – одиночные заземлители

n – количество одиночных заземлителей (для получения необходимого сопротивления заземления)

Рисунок 3.11

Расчет заземляющего устройства приведен в [16]. Требования к заземляющему устройству и его элементам, классификация и области применения заземляющего устройства подробно рассматриваются на лабораторных занятиях.

 

Зануление

В электроустановках напряжением до 1 кВ при использовании трех проводных сетей с заземленной нейтралью защитное заземление не обеспечивает защиты людей от поражения электрическим током (рисунок 3.12).

В этом случае при к.з. фазы на корпус ток может оказаться недостаточным для срабатывания защиты (например, предохранителя) и человек, прикоснувшись к поврежденному корпусу, окажется под напряжением. Оно будет тем больше, чем больше . Следовательно, величину необходимо уменьшать, что потребует громоздкого и дорогого заземляющего устройства. Поэтому в четырех проводных сетях с глухозаземленной нейтралью и нулевым проводом применяют зануление.

Зануление – это преднамеренное соединение корпуса оборудования (нетоковедущей части) с нулевым защитным проводником. В момент короткого замыкания фазы на корпус образуется петля «фаза-нуль», т.е. получается однофазное короткое замыкание. Под действием срабатывает защита (предохранитель, автомат), и поврежденная часть электроустановки отключается. Чем быстрея произойдет отключение, тем эффективнее защитное действие зануления. Пока поврежденная часть электроустановки находится под напряжением, прикосновение ко всем корпусам, включая исправные, опасно. Для надежного отключения электроустановки нужно, чтобы был достаточной величины, т.е. сопротивление цепи «фаза-нуль» мало. Необходимо выполнение условия: , где: - ток номинальной плавкой вставки (FU).

3.8.9 Средства индивидуальной защиты (СИЗ)

СИЗ относятся к средствам защиты, используемых в электроустановках, служащих для защиты людей от поражения электрическим током, электрической дуги и электромагнитного поля. Изолирующие средства делятся на основные и дополнительные.

К основным в электроустановках напряжением свыше 1000 В относятся: электроизмерительные клещи, указатели напряжения для фазировки, изолирующие устройства и приспособления для работ на воздушных линиях с непосредственным прикосновением к токоведущим частям.

К дополнительным в электроустановках напряжением свыше 1000 В относятся: диэлектрические перчатки, боты, ковры; индивидуальные экранирующие комплекты; изолирующие подставки и накладки; переносные заземления; оградительные устройства; плакаты и знаки безопасности.

К основным в электроустановках напряжением до 1000 В относятся: изолирующие штанги; изолирующие и электроизмерительные клещи; указатели напряжения; диэлектрические перчатки; слесарно-монтажный инструмент с изолирующими рукоятками.

К дополнительным в электроустановках напряжением до 1000 В относятся: диэлектрические галоши и ковры; переносные заземления; изолирующие подставки и накладки; плакаты и знаки безопасности; оградительные устройства.

Средства защиты, кроме плакатов и знаков безопасности, диэлектрических ковров, изолирующих подставок, переносных заземлений и ограждений подвергаются эксплуатационным испытаниям: перчатки – 2 раза в год, галоши – 1 раз в год, боты – 1 раз в 3 года, указатели напряжения и инструмент с изолирующими рукоятками – 1 раз в год.

При работе на отключенных токоведущих частях для защиты от ошибочно поданного или наведенного напряжения применяют в качестве наиболее надежной защиты переносные заземления. При наложении заземления сначала заземление следует соединить с «землей», затем проверить отсутствие напряжения, после чего наложить на токоведущие части.

3.8.10 Выравнивание потенциалов. Напряжение шага. Напряжение прикосновения. Потенциалы растекания тока в земле

При пробое изоляции на корпус, присоединенный к заземлителю, обрыве и падении провода на землю потенциалы точек земной поверхности (токопроводящего поля) распределяются по гиперболическому закону согласно рисунка 3.14.

Можно показать, что ,

где – ток замыкания на землю, А;

– удельное сопротивление грунта, ;

x – расстояние от заземлителя до ближайшей ноги человека, м.

Наибольший потенциал, равный потенциалу заземлителя имеет точка земли, расположенная над заземлителем или в месте замыкания провода на землю. При удалении от нее в любую сторону потенциалы поверхности земли снижаются. Можно считать, что на расстоянии более 20 м от заземлителя зона растекания заканчивается (). Человек, находящийся в зоне растекания, может попасть под напряжение шага . Напряжение шага – это разность потенциалов между двумя точками земли, находящимися одна от другой на расстоянии шага ( м), на которых одновременно стоит человек.

.

Из рисунка 3.14, а видно, что:

1) чем дальше стоит от заземлителя, или упавшего провода человек, тем меньше напряжение шага;

2) чем больше ширина шага, тем больше напряжение шага (если человек упадет, увеличится);

3) чем больше потенциал заземлителя, тем больше напряжение шага.

Человек, стоящий на земле (рисунок 3.14, б) и касающийся находящегося под напряжением заземленного корпуса оборудования, подвергается действию напряжения прикосновения. Напряжение прикосновения – это разность потенциалов между ногой и рукой человека (между двумя точками электрической цепи, которых одновременно касается человек).

.

Из рисунка 3.14, б видно, что потенциал руки человека во всех случаях касания к корпусам 1, 2, 3 равны потенциалу заземлителя, поэтому с удалением от заземлителя напряжение прикосновения увеличивается: Наибольшей опасности человек подвергается в зоне нулевого потенциала. Это явление называется выносом потенциала и заключается в том, что заземленное оборудование расположено слишком далеко от заземлителя.

 

В качестве коллективного средства защиты от напряжения шага и напряжения прикосновения применяется выравнивание потенциала (рисунок 3.15). Заземляющее устройство выполняется не одиночным заземлителем, а совокупностью горизонтальных и вертикальных металлических электродов, рассредоточенных по всей площади (или контуру) пола рабочей зоны.

Потенциалы внутри контура выравниваются, а за пределами контура – возможны опасные значения и , поэтому желательно заземляемое оборудование расположить внутри контура. Выравнивание потенциалов применяется как дополнительное средство защиты к защитному заземлению и занулению.

 

Организационно-технические мероприятия, обеспечивающие безопасность работ в электроустановках

Кроме указанных технических способов и средств защиты применяются организационные и технические мероприятия. Организационными мероприятиями, обеспечивающими безопасность в электроустановках, являются: оформление работ нарядом-допуском, распоряжением или перечнем работ в порядке текущей эксплуатации; допуск к работе; надзор во время работы; оформление перерывов в работе, окончания работы, переводов на другое рабочее место.

Техническими мероприятиями, обеспечивающими безопасность работ в электроустановках, являются: производство необходимых отключений и переключений; проверка отсутствия снятого напряжения; вывешивание плакатов; наложение переносного заземления; ограждения места работы и т.д.

 

Разработал доцент кафедры БЖД С.Н.Панов

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.