Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Основні теореми диференціального числення.






Тут ми сформулюємо і доведемо декілька важливих теорем, на яких значною мірою ґрунтується подальший матеріал. Всі ці теореми належать французьким математикам – П. Ферма, М.Роллю, Ж.–Л.Лагранжу та О.Коші..

Теорема Ферма* Нехай функція неперервна на інтервалі і у деякій точці цього інтервалу набуває найбільшого або найменшого на цьому інтервалі значення. Тоді, якщо в точці існує похідна , то .

Доведення. Припустимо для визначеності, що у точці функція набуває найбільшого на значення. Тоді виконано: . Надамо значенню приріст так, щоб точка належала інтервалу . Функція отримає приріст . Розглянемо:

.

Якщо , то , і тоді (на підставі теореми про зберігання знаку границі). А якщо , то , і тоді . З цих двох нерівностей випливає, що . Теорему доведено.

Ця теорема має простий геометричний зміст: якщо в точці функція досягає найбільшого або найменшого на інтервалі значення, і в цій точці існує дотична до графіка функції, то ця дотична паралельна осі (рис. 20 а, б).

 

 

а б

 

Рис. 20.

 

Зауваження. Твердження теореми втрачає силу, якщо інтервал в умові теореми замінити півінтервалом або відрізком. Наприклад, функція досягає найбільшого на відрізку значення в точці , і похідна (ліва) в цій точці існує: . Але вона не дорівнює нулю.

Теорема Ролля*. Нехай функція

1) неперервна на відрізку ,

2) диференційовна принаймні на інтервалі ,

3 ) на кінцях відрізку набуває рівних значень, тобто .

Тоді на інтервалі знайдеться принаймні одна точка така, що виконується рівність .

Доведення. Оскільки функція неперервна на відрізку , то за другою теоремою Вейєрштрасса (див. розділ «Вступ до аналізу») вона досягає на цьому відрізку свого найменшого значення та найбільшого значення . Очевидно, що . Розглянемо дві можливі ситуації.

1). . Тоді на , і отже , тобто у якості точки можна взяти будь яку точку інтервалу .

2). . Тоді з умови випливає, що хоча б одне з цих значень не набувається на кінцях відрізка . Припустимо для визначеності, що цим значенням являється , тобто . А тоді в точці досягається найбільше значення функції на інтервалі , отже за теоремою Ферма . Теорему доведено.

З геометричної точки зору ця теорема означає, що при виконанні умов теореми на інтервалі існує хоча б одна точка , в якій дотична до графіка функції паралельна осі . На рис. 21 дві такі точки і .

 

Рис. 21.

 

З механічної точки зору теорема Ролля означає наступне: якщо в деякі різні моменти часу і точка, що рухається вздовж прямої, має одну й ту ж координату, тобто , то на проміжку часу знайдеться такий момент , у який миттєва швидкість точки буде дорівнювати нулю: . В цей момент точка починає зворотний шлях.

Зауваження. Всі три умови теореми Ролля суттєві, тобто відмовлення хоча б від одної з них робить твердження теореми несправедливим. Розглянемо наступні приклади.

1. Відмовимось від першої умови, зберігаючи при цьому другу і третю. Розглянемо на відрізку функцію (рис. 22).

 

 

 

Рис. 22.

 

Для цієї функції не існує точки, у якій похідна дорівнює нулю, оскільки .

2. Відмовимось від другої умови, залишивши при цьому першу і третю. Тепер розглянемо функцію на відрізку (рис. 23).

Рис. 23.

 

Знову не існує точки , де , оскільки при , при , а у точці похідної не існує (див. п. 3).

3. Відмовимось від третьої умови, залишивши першу і другу. Розглянемо функцію на відрізку (рис. 24). І знову нема точки, у якій похідна дорівнювала б нулю, оскільки .

 

Рис. 24.

 

З теореми Ролля випливають наступні корисні наслідки.

Наслідок 1. Між будь якими двома коренями неперервної і неперервно диференційовної функції лежить принаймні один корінь її похідної.

Наслідок 2. Якщо неперервна та диференційовна функція періодична з періодом , то на будь якому інтервалі () існує точка, у якій похідна функції дорівнює нулю.

Теорема Лагранжа*. Якщо функція неперервна на відрізку і диференційовна принаймні на інтервалі , то на інтервалі знайдеться принаймні одна точка така, що виконується рівність:

.

Доведення. Введемо допоміжну функцію , де сталу підбираємо з умови: . Тоді , звідки:

.

Тоді функція на відрізку задовольнятиме всі умови теореми Ролля. Дійсно, вона неперервна на , як сума двох неперервних функцій, диференційовна на як сума двох диференційовних функцій, і на кінцях відрізку приймає рівні значення. Згідно теореми Ролля така, що . А оскільки , то

, що й треба було довести.

Теорема Лагранжа має наступний геометричний зміст. Розглянемо графік функції на відрізку (рис. 25). Проведемо січну . Її кутовий коефіцієнт:

.

 

Рис. 25.

 

З іншого боку, оскільки

, то з геометричного зміста похідної випливає, що кутовий коефіцієнт дотичної, яку проведено до графіка функції в точці , співпадає з кутовим коефіцієнтом січної, тобто дотична паралельна січній. Таким чином з геометричногї точки зору теорема Лагранжа означає, що при виконанні умов теореми на інтревалі знайдеться принаймні одна точка така, в якій дотична, проведена до графіка функції, паралельна січній . На рис. 25 таких точок дві – і .

Теорема Лагранжа має також і механічну інтерпретацію. Якщо – координата точки, що рухається, то відношення

дає середню швидкість точки за проміжок часу . Теорема Лагранжа стверджує, що знайдеться момент часу , в який миттєва швидкість точки буде дорівнювати середній:

.

Приклад. Для функції на відрізку знайти точку, в якій дотична до графіка функції паралельна січній.

Маємо: , . Тоді за теоремою Лагранжа:

,

, тобто .

Теорему Лагранжа (її ще називають формулою скінченних приростів) ми неоднократно будемо використовувати у подальшому.

Теорема Коші* Нехай функції неперервні на відрізку , диференційовні принаймні на інтервалі , і крім того : . Тоді на інтервалі знайдеться принаймні одна точка така, що виконується рівність:

.

Доведення. Як і в теоремі Лагранжа, введемо допоміжну функцію:

, де число підбираємо з умови: . Тоді:

, і отже функція на відрізку задовольняє всі умови теореми Ролля, згідно з якою . А оскільки , то , і отже:

.

Теорему доведено.

Теорема Лагранжа є частинним випадком теореми Коші (). Але теорема Лагранжа настільки важлива, що ми дали окреме її доведення.

Може скластися враження, що теорему Коші легко довести на підставі теореми Лагранжа, а саме: функції та на відрізку задовольняють, очевидно, всі умови теореми Лагранжа, тому:

.

Насправді точка для кожної функції в теоремі Лагранжа своя, і правильний запис такий:

.

А теорема Коші стверджує наявність точки єдиної для обох функцій.

Інше питання, яке може виникнути, таке: в теоремі Коші є умова . Цілком зрозуміло, адже міститься в твердженні теореми у знаменнику. Але ж там є ще інший знаменник: . Чому ж нема умови ? З’ясовується, що вона зайва. Дійсно, якби виконувалась рівність , то функція на відрізку задовольняла б всі умови теореми Ролля, згідно якій на інтервалі існувала б точка така, що , а в умові теореми Коші: .

Геометрична інтерпретація теореми Коші – та ж сама, що й теореми Лагранжа. Для того, щоб в цьому переконатися, перейдемо від явного задання функції , що фігурує в теоремі Лагранжа, до параметричного: , ; , , , . Тоді формула Лагранжа набуває вигляду:

, (12.1) де – таке значення параметру , при якому . Тобто отримали формулу Коші. Ліва частина формули (12.1) також дає кутовий коефіцієнт січної, що з’єднує кінці кривої , , а права – кутовий коефіцієнт дотичної у деякій внутрішній точці цієї кривої, яка відповідає значенню .

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.