Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Энергообеспечение и захоронение ядерных отходов






Жизнь современного общества немыслима без мощных источников энергии. Их немного - гидро-, тепловые и атомные электростанции. Использование энергии ветра, солнца, приливов и т.п. пока не получило широкого распространения. Тепловые станции выбрасывают в воздух громадное количество пыли и газов. В них содержатся и радионуклиды, и сера, которая потом возвращается на землю в виде кислотных дождей. Гидроресурсы даже в нашей огромной стране ограничены, и к тому же строительство гидростанций в большинстве случаев приводит к нежелательному изменению ландшафта и климата. В ближайшее время одним из основных источников энергии останутся атомные электростанции. Они отличаются многими достоинствами, в том числе и экологическими, а применение надежной защиты может сделать их достаточно безопасными. Но остается еще один важный вопрос: что делать с радиоактивными отходами? Все радиоактивные отходы АЭС, скопившиеся за все время их работы, хранятся на территории станций. В целом действующая на АЭС схема обращения с отходами пока обеспечивает полную безопасность, не оказывает влияния на окружающую среду и соответствует требованиям МАГАТЭ. Однако хранилища уже переполняются, требуются их расширение и реконструкция. Кроме того, приходит пора демонтировать станции, отслужившие свой срок. Расчетное время эксплуатации отечественных реакторов - 30 лет. С 2000 г. реакторы будут останавливаться практически ежегодно. И пока не будет найден простой и дешевый способ захоронения радиоактивных отходов, говорить о серьезных перспективах атомной энергетики преждевременно.

Радиоактивное загрязнение Земли началось и возрастало с каждым принципиальным шагом, и каждый раз на несколько порядков: после декабря 1942г., когда итальянский, физик Энрико Ферми (1901-1954) запустил первый ядерный реактор, после июня-августа 1945 г. - первого испытания и двух применений ядерного оружия, после августа 1954 г. - первого испытания водородной бомбы, после 1954 г. - пуска первой атомной электростанции в Обнинске; в сентябре того же года произошла катастрофа в Кыштыме - вблизи этого уральского города взорвалось хранилище жидких радиоактивных отходов. Все население с площади более тысячи квадратных километров было эвакуировано, а зона объявлена заповедником и до сих пор выведена из землепользования. Только чернобыльская катастрофа имеет тот же порядок по величине загрязнения, что кыштымская, но она превосходит по числу пострадавших.

Сегодня ядерная энергия - результат активной человеческой деятельности. В 1991г. в мире работало 412 энергетических блоков, больших ядерных реакторов с общей мощностью 329 ГВт. Эта мощность использовалась примерно на 70%, и за 1992 г. ядерная энергетика произвела 2, 004*1012кBт*ч, или 21%, всей электроэнергии, производящейся в мире. Для этого потребовалось 52 тыс. т природного урана, обогащенного нечетным изотопом. Цепная реакция в современных ядерных реакторах порождена преимущественно изотопом урана-235. Но уран выгорает в реакторах только на несколько процентов. Использованное ядерное топливо после некоторого срока хранения перерабатывают: из него извлекают несгораемый уран и образовавшийся в реакторе плутоний, которые снова годны для получения энергии. То, что остается при этой переработке, и называется высокоактивными ядерными отходами. В их составе есть актиноиды, изотопы трансурановых элементов (все они радиоактивны) и продукты деления урана (радиоактивна часть из них) - всего 38 изотопов с периодами полураспада от 10 млн. до 5 лет.

В настоящее время отходы содержат в специальных хранилищах, где размещаются стальные контейнеры, в которых отходы сплавлены вместе со стекло-минеральной матрицей. Захоронение отходов пока не производится, но проекты захоронения активно разрабатываются.

—В последнее время продолжает обсуждаться старая идея физиков-реакторщиков - переработать долгоживущие радиоактивные изотопы в ядра с меньшим временем жизни с помощью ядерных реакций, протекающих в самих реакторах, если эксплуатировать последние в особом режиме; Казалось бы, чего проще, и никакого дополнительного оборудования не нужно. К сожалению, различие скоростей наработки новых и переработки уже образовавшихся долгоживущих изотопов невелико, и, как показывают расчеты, положительный баланс наступит лишь примерно через 500 лет. До этого времени человечество “утонет” в горах радиоактивных отходов. Другими словами, сами себя реакторы излечить от радиоактивности не могут.

Радиоактивные шлаки можно изолировать в Специальных толстостенных могильниках. Беда только в том, что такие захоронения должны быть рассчитаны по крайней мере на сотню тысяч лет безопасного хранения. А как предугадать, что может случиться за такой огромный период?

Как бы там ни было, хранилища отработанного ядерного топлива должны располагаться в таких местах, где заведомо исключаются землетрясения, смещения или разломы грунтовых пластов и тому подобное. Кроме того, поскольку радиоактивный распад сопровождается разогревом распадающегося вещества, спрятанные в могильнике шлаки нужно еще и охлаждать. При неправильном режиме хранения может произойти перегрев и даже взрыв горячих шлаков.

В некоторых странах хранилища особо опасных в экологическом отношении шлаков долгоживущих изотопов располагаются под землей на глубине в несколько сотен метров, в окружении скальных пород. Контейнеры со шлаками снабжают толстыми антикоррозийными оболочками, многометровыми слоями глины, препятствующей просачиванию грунтовых вод. Одно из таких хранилищ строится в Швеции на полукилометровой глубине. Это сложное инженерное сооружение с разнообразной контрольной аппаратурой. Его будут обслуживать 75 специалистов.

Строители говорят, что уверенность в надежности таких сверхглубоких радиоактивных могильников вселяет в них то, что в Канаде на глубине 430 м обнаружено рудное тело объемом свыше миллиона кубометров с огромным, 55%-ным содержанием урана (обычно руды содержат проценты или даже доли процента этого элемента). Это уникальное рудное образование, возникшее в результате осадочных процессов примерно 1, 3 млн. лет назад, окружено слоем глины толщиной в разных местах от 5 до 30 м, который действительно накрепко изолировал уран и продукты его распада. На поверхности над рудным телом и в его окрестностях нет никаких следов ни повышения радиоактивности, ни увеличения температуры. Однако как будет в других местах и при других условиях?

Кое-где радиоактивные шлаки остекловывают, превращая в прочные монолитные блоки. Хранилища снабжаются специальными системами контроля и отвода тепла. В качестве оправдания можно опять сослаться на естественный феномен. В Экваториальной Африке, в Габоне, около 2 млн. лет назад случилось так, что вода и урановая руда собрались в созданной самой природой каменной чаше внутри скальных пород и в такой пропорции, что получился естественный, “без всякого участия человека”, атомный реактор, и там в течение некоторого времени, пока не выгорел скопившийся уран, шла цепная реакция деления. Образовывался плутоний и те же радиоактивные осколки, как и в наших искусственно созданных атомных котлах. Изотопный анализ воды, почвы и окружающих горных пород показал, что радиоактивность осталась замурованной и за 2 млн. прошедших с тех пор лет ее диффузия была незначительной. Это позволяет надеяться, что остеклованные источники радиоактивности в ближайшую сотню тысяч лет тоже останутся наглухо изолированными.

Иногда шлаки замуровывают в глыбы особо прочного бетона, которые сбрасываются в океанские глубины, хотя это далеко не лучший подарок нашим потомкам...

В последнее время всерьез обсуждается возможность забрасывать контейнеры с долгоживущими изотопами с помощью ракет на невидимую обратную сторону Луны. Вот только как обеспечить стопроцентную гарантию, что все запуски будут успешными, ни одна из ракет-носителей не взорвется в земной атмосфере и не засыплет ее смертоносным пеплом? Риск очень велик. Да и вообще мы не знаем, для чего понадобится обратная сторона Луны нашим потомкам.

А радиоактивных шлаков на АЭС образуется немало. Например, в Швеции, энергетика которой на 50% атомная, к 2010 г. накопится примерно 200 тыс. куб. м. требующих захоронения радиоактивных отходов. Из них 15% содержат долгоживущие изотопы, не выгоревшие в атомных реакторах остатки концентрированного ядерного горючего, и требуют особо тщательного хранения. Это объем концертного зала и только лишь для одной маленькой Швеции!

Наиболее рациональное место захоронения - недра Земли. Для гарантии радиационной безопасности земной поверхности через миллионы лет глубина захоронения должна быть минимум полкилометра. Для большей уверенности лучше расположить отходы еще глубже, но, увы, стоимость горных работ растет быстрее, чем квадрат глубины.

Относительно недавно была высказана идея захоронения высокоактивных ядерных отходов в глубоких скважинах, заполненных легкоплавкой, инертной, водонепроницаемой средой. Наиболее удачным заполнение скважин может оказаться природная сера. Герметичные капсулы с высокоактивными отходами погружаются до дна скважины, расплавляя серу собственным тепловыделением. Предложенная идея пока не реализована.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.