Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Моделирование в науке






Все научное познание базируется на методе моделирования. Теоретической базой моделирования являются теория отражения и теория подобия.

Подобие – это взаимно однозначное соответствие между двумя объектами, при котором известны функции перехода от параметров одного объекта к параметрам другого, а математические описания этих объектов могут быть преобразованы в тождественные.

Научное исследование любого объекта всегда сводится к построению модели или совокупности моделей объекта исследования. Причем, модель при научном моделировании выступает и как цель, и как средство, и как объект исследований.

В основе каждой научной модели лежит более или менее развитая теория отображаемого объекта, и сама модель ограничивается рамками этой модели.

В научном моделировании выделяют следующие этапы.

Исходным пунктом для построения модели, как правило, бывает эмпирическая (наблюдающаяся в опытах) картина явления, выдвигающая перед исследователем задачу, на ко­торую надо найти ответ. При уяснении и постановке зада­чи происходит процесс схематизации и идеализации явле­ния, выделения его свойств и влияющих на него факторов. После выявления существенных свойств и факторов иссле­дователь приступает к их качественной и количественной оценке и интерпретации. Это необходимо для того, чтобы перевести эмпирически полученные данные на язык матема­тических понятий и величин, поскольку язык математики считается универсальным языком науки. Математическая модель, таким образом, является результатом формализа­ции реального объекта или явления. После построения моде­ли проводится проверка адекватности модели явлению, физической и логической непротиворечивости или коррек­тности. Построенная модель исследуется и на основе ее анализа выдвигаются гипотезы о возможном поведении изучаемого явления, закономерностях его функционирова­ния и развития. Далее планируются эксперименты по проверке выдвинутых гипотез. Если они подтверждаются, то разработанная модель становится основой для построения научной теории изучаемого явления. Таковы основные эта­пы научного моделирования.

 

Глобальные модели развития человечества. Модель WORLD-3

Как будет развиваться мир в обозримом будущем? Каково ближайшее будущее человечества как вида в целом? Речь идет именно о человечестве в целом, какое у него (у нас всех, живущих на Земле) будущее?

Будущее человечества определяется столь огромным количеством процессов, частично им контролируемых, частично нет, и эти процессы столь взаимосвязаны и имеют столь противоречивые последствия, что лишь математическое моделирование их во всей разумной совокупности, реализуемое на современных компьютерах, может дать качественно верный прогноз.

Такие модели, получившие название глобальных, начали появляться в 70-х годах нашего века. Наиболее известны модели МИР-1, МИР-2, МИР-3, сформулированные и изученные группой сотрудников Массачусетского технологического института (США) под руководством Д.Х. Медоуз и Д. Форрестера. Работы были начаты по поручению «Римского клуба» - международной неправительственной группы выдающихся государственных деятелей, ученых, бизнесменов. Результаты в свое время произвели в западном мире сенсацию, ибо большинство сценариев возможного развития событий вели к результатам, которые можно назвать концом света (разумеется, с точки зрения человечества). Вместе с тем авторы не раз подчеркивали, что речь идет не о заведомо предопределенном будущем, а о выборе путей развития человечества, среди которых есть и ведущие к стабильности.

Что является причиной возможной нестабильности? Характерной чертой жизни человечества в эпоху после начала промышленной революции стал быстрый (часто экспоненциально быстрый) рост многих показателей. Период удвоения численности населения Земли составляет примерно 40 лет (наличие такого постоянного периода – характерная черта экспоненциального роста). Биологи и экологи хорошо знают, что экспоненциальное наращивание численности популяции чаще всего кончается катастрофой – истощаются ресурсы, поддерживающие ее существование. С точки зрения существования вида это не трагедия (кроме уникальных случаев, когда данный вид весь сводится к одной популяции). Однако, в наше время человечество израсходовало почти все ресурсы для экстенсивного роста и распространения «вширь». Объем промышленного производства в XX веке также растет практически экспоненциально с годовым темпом прироста в среднем 3, 3%. Это приводит к истощению природных ресурсов – полезных ископаемых, чистой воды, чистого воздуха. Содержание в атмосфере одного из устойчивых соединений углерода (диоксида) в результате сжигания органического топлива и истощения лесов возросло с начала века на треть; потенциально это ведет к глобальному потеплению на Земле с самыми катастрофическими последствиями. Чем больше людей, тем больше необходимо продуктов питания, и мировой объем вносимых минеральных удобрений растет экспоненциально с периодом удвоения около 15 лет. Ясно и без всякого моделирования, что подобная жизнь с безудержным ростом всего и вся не может длиться долго – а ныне «долго» сопоставимо со сроком жизни двух-трех поколений.

В то же время для глобальных процессов характерно то, что каждый отдельно взятый процесс нельзя однозначно назвать «хорошим» или «плохим» сточки зрения влияния на судьбу человечества. Увеличение производства удобрений ведет к увеличению производства продуктов питания - «хорошо», но оно же ведет к уменьшению запасов чистой пресной воды, которую портят удобрения, попадаю­щие через почву с дождями в реки и подземные источники, ведет к необходимости. увеличения производства энергии для добычи удобрений и связанному с этим химическому и тепловому загрязнения почвы и атмосферы и т.д. – «плохо». Взвесить последствия всего этого на развитие человечества можно лишь при комплексном учете всех факторов разом.

В чем же заключаются возможности избежать катастрофических последствий для развития человечества? Были сформулированы следующие три правила, соблюдение которых необходимо для глобальной устойчивости (прийти к ней необходимо после прекращения нынешних процессов неконтролируемого роста).

1. Для возобновляемых ресурсов (лес, вода, рыба и т.д.) темпы потребления не должны превышать темпов естественного восстановления.

2. Для не возобновляемых ресурсов (уголь, нефть, руды и т.д.) темпы потребления не должны превышать темпов их замены на возобновляемые (развитие солнечной и ветровой энергетики, посадка лесов и т.д.) и темпов развития новых технологий для обеспечения смены ресурсов для того, чтобы после исчезновения, к примеру, нефти был обеспечен приток энергии от нового ресурса.

3. Для загрязняющих веществ предельная интенсивность выбросов не должна превышать темпов, с которыми эти вещества перерабатываются или теряют вредные для окружающей среды свойства.

В настоящее время человечество отнюдь не руководствуется этими правилами (хотя и есть соответствующие попытки – например, соглашения о квотах на рыбную ловлю). Если в прошлые века это не представляло опасности для вида в целом, то в наши дни ситуация изменилась. Достаточно сказать, что если бы при сегодняшней численности населения Земли каждый человек потреблял бы столько энергии и других ресурсов, сколько их сегодня потребляет в среднем гражданин США (при существующих технологиях), это привело бы к немедленной вселенской катастрофе.

Модель WORLD-3 (МИР-3). Модель состоит из пяти секторов:

• стойкие загрязнения;

• не возобновляемые ресурсы;

• население;

• сельское хозяйство (производство продуктов питания, плодородие земель, освоение земель);

• экономика (промышленное производство, производство услуг, рабочие места).

Исходными являются первичные взаимосвязи:

• численность населения и запасы промышленного капитала;

• численность населения и площадь возделываемых земель;

• площадь возделываемых земель и объем промышленного капитала;

• численность населения и капитал сектора услуг;

• капитал сектора услуг и промышленный капитал и т.д.

В каждом секторе прослеживаются все первичные взаимосвязи и выражаются математическими соотношениями. По мере необходимости учитываются процессы материального и информационного запаздывания, так как реакция, скажем, численности населения на улучшение питания является не мгновенной, а запаздывающей. Это типично для большинства рассматриваемых процессов.

Основное назначение модели WORLD-3 – представить возможные пути достижения экономикой (в широком смысле термина) такой численности населения планеты, которая может поддерживаться окружающей средой неопределенно долгое время. Она не предсказывает нечто отдельное для России или Египта, не решает никаких локальных вопросов. Модель исходит из того, что на Земле существует глобальное сообщество.

Динамика численности населения – интегральная характеристика, которая вби­рает в себя все факторы. Чисто умозрительно возможны два типа устойчивых динамик (непрерывный рост и «сигмоидное» приближение к равновесию) и три типа неустойчивых, связанных с выходом за пределы допустимого (колебания с последующим выходом на стационар, хаотические колебания и коллапс, т.е. исчезновение вида). Непрерывный рост представляется совершенно нереалистическим, последняя из неустойчивых динамик – трагедией для человечества, а за резкими колебаниями, как нетрудно догадаться, стоят войны, эпидемии, голод – то, что мы и без всяких моделей видим в реальности.

Типичные для модели WORLD-3 взаимосвязи, описываемые дифференциальными и «обычными» уравнениями приведе­ны на рис. 3.1.

Рис. 3.1. Типичные для модели WORLD-3 взаимосвязи между объектами

 

Он показывает связи между численностью населения, промышленным капиталом, площадью возделываемых земель и загрязнением окружающей среды. Каждая стрелка на рисунке указывает наличие причинной связи, которая может быть непосредственной или запаздывающей, положительной или отрицательной.

Понятия положительной и отрицательной обратной связи взяты из теории авто­матического регулирования (раздел кибернетики). Причинно-следственная связь между двумя элементами называется отрицательной, если изменение одного элемента передается второму, возвращается от него к первому и изменяет его в направле­нии, противоположном первоначальному (подавляет), и положительной, если это изменение, возвращаясь к первому, усиливает его.

Набор таких рисунков графически исчерпывает модель WORLD-3. Однако, за каждой стрелкой – первичные взаимосвязи, уравнения, в которые входит ряд параметров. Фактически именно значения этих параметров и определяют результаты решения, поэтому к их анализу привлекаются как многочисленные узкие специалисты, так и многие эмпирические (статистические) данные, собранные в десятках справочников, отчетов ООН и отдельных государств. Количество взаимосвязанных переменных в модели WORLD-3 равно 225, параметров – еще больше.

Результаты глобального моделирования. Опубликованные «сценарии» развития человечества, следующие из моделей WORLD-3, охватывают промежуток времени от 1900 года до 2100 года. Прошедшие 90 лет, позволили «настроить» модель, понять степень ее достоверности.

Первый из сценариев основан на гипотезе, что все будет развиваться без серьезных изменений, глобальных политических катаклизмов, без особых усилий по сохранению ресурсов и уменьшению загрязнения окружающей среды. Весьма печальные результаты такого развития иллюстрирует рис. 3.2.

 

Рис. 3.2. Варианты нерегулируемого развития.

 

Разумеется, временные шкалы здесь весьма расплывчаты. Что будет, если на Земле обнаружатся и окажутся доступными (например, в океанах) дополнительные залежи нефти и газа, других ресурсов? Моделирование безжалостно утверждает, что это не изменит качественно характер эволюции, а лишь сдвинет вправо точки экстремумов кривых.

Вместе с тем модель WORLD-3 позволяет нащупать пути регулируемого развития, которое ведет к плавному («сигмоидному») поведению основных переменных. Этот путь связан с самоограничениями и переходом на усовершенствованные промышленные и сельскохозяйственные технологии. Иллюстрацией тому является рис. 3.3.

 

 

Рис. 3.3. Варианты регулируемого развития

 

Итак, математическое компьютерное моделирование применяется для исследования даже такой сверхзадачи, как самосохранение человека как вида.

 

Литература и источники:

Основная:

1. А. В. Могилев, Н. И. Пак, Е. К. Хеннер «Информатика: учебное пособие для студентов пед. вузов» под ред. Е. К. Хеннера – 3-е изд. перераб и доп., М.: Академия, 2004. – 848 стр.

2. А. В. Могилев, Н. И. Пак, Е. К. Хеннер «Информатика: учебное пособие для студ. высш. пед. учеб. заведений» под ред. А. В. Могилева, М.: Академия, 2006. – 327 стр.

 

Дополнительная:

3. А. В. Могилев, Н. И. Пак, Е. К. Хеннер «Информатика» под ред. Е. К. Хеннера, М.: Академия, 2000.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.