Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Определение погрешности косвенного измерения.






 

Формулы вычисления погрешностей косвенных измерений основаны на представлениях дифференциального исчисления.

Пусть зависимость величины Y от измеряемой величины Z имеет простой вид:

.

Здесь и - постоянные, значения которых известны. Если z увеличить или уменьшить на некоторое число , то соответственно изменится на :

Если - погрешность изме-ренной величины Z, то соответственно будет пог-решностью вычисляемой ве-личины Y.

Получим формулу абсолютной погрешности в общем случае функции од-ной переменной . Пусть график этой функции имеет вид, показанный на рис.1. Точному значению

аргумента z0 соответствует

точное значение функции

y0 = f(z0). Измеренное зна-чение аргумента отличается от точного значения аргумента на величину Δ z вследствие ошибок измерений. Значение функции будет отличаться от точного на величину Δ y.

Из геометрического смысла производной как тангенса угла наклона касательной к кривой в данной точке (рис. 1) следует:

 

. (10)

 

Формула для относительной погрешности косвенного измерения в случае функции одной переменной будет иметь вид:

 

. (11)

 

Учитывая, что дифференциал функции равен , получим

(12)

 

Если косвенное измерение представляет собой функцию m переменных , то погрешность косвенного измерения будет зави-сеть от погрешностей прямых измерений . Частную погрешность, связанную с ошибкой измерения аргумента , обозначим . Она составляет приращение функции за счет приращения при условии, что все остальные аргументы неизменны. Таким образом, частную абсолютную погрешность запишем согласно (10) в следующем виде:

(13)

 

Таким образом, чтобы найти частную погрешность косвенного измерения , надо, согласно (13), частную производную умножить на погрешность прямого измерения . При вычислении частной производной функции по остальные аргументы считаются постоянными.

Результирующая абсолютная погрешность косвенного измерения определяется по формуле, в которую входят квадраты частных погрешностей

косвенного измерения [1]:

 

 

или с учетом (13)

 

(14)

 

Относительная погрешность косвенного измерения определяется по формуле:

 

 

 

Или с учетом (11) и (12)

 

. (15)

 

Пользуясь (14) и (15), находят одну из погрешностей, абсолютную или относительную, в зависимости от удобства вычислений. Так, например, если рабочая формула имеет вид произведения, отношения измеряемых величин, ее легко логарифмировать и по формуле (15) определить относительную погрешность косвенного измерения. Затем абсолютную погрешность вычислить по формуле (16):

 

 

. (16)

 


Для иллюстрации вышеизложенного порядка определения погреш-ности косвенных измерений вернемся к виртуальной лабораторной работе «Определение ускорения свободного падения при помощи математического маятника».

Рабочая формула (1) имеет вид отношения измеряемых величин:

 

.

Поэтому начнем с определения относительной погрешности. Для этого прологарифмируем данное выражение, а затем вычислим частные произ-водные:

 

; ; .

 

Подстановка в формулу (15) приводит к формуле относительной погрешности косвенного измерения:

 

(17)

 

После подстановка результатов прямых измерений

{ ; } в (17) получаем:

 

(18)

 

 

Для вычисления абсолютной погрешности используем выражение (16) и ранее вычисленное значение (9) ускорения свободного падения g:

.

Результат вычисления абсолютной погрешности округляем до одной значащей цифры. Вычисленное значение абсолютной погрешности определяет точность записи окончательного результата:

 

, α ≈ 1. (19)

 

При этом доверительная вероятность определяется доверительной вероятностью тех из прямых измерений, которые внесли решающий вклад в погрешность косвенного измерения. В данном случае это измерения периода.

Таким образом, с вероятностью близкой к 1 величина g лежит в пределах от 8 до 12 .

Для получения более точного значения ускорения свободного падения

g необходимо совершенствовать методику измерений. С этой целью надо уменьшить относительную погрешность , которая в основном, как следует из формулы (18), определяется погрешностью измерения времени.

Для этого надо измерять время не одного полного колебания, а, например, 10-ти полных колебаний. Тогда, как следует из (2), формула относительной погрешности примет вид:

 

. (20)

В табл.4 представлены результаты измерения времени для N = 10

полных колебаний маятника.

Табл.4

τ i,, с , с2
  20, 4 0, 4 16 10-2
  19, 8 0, 2 4 10-2
  20, 4 0, 4 16 10-2
  19, 8 0, 2 4 10-2
  19, 6 0, 4 16 10-2

; .

Проведя расчет по формуле (8) (как и в случае измерения периода возьмем α = 0, 7), получаем

.

Полная погрешность измерения времени

.

Здесь случайной погрешности соответствует доверительная вероятность α = 0, 7, а приборной погрешности соответствует доверительная вероятность, близкая к 1. В данном случае случайная и приборная погрешности оказались сопоставимы между собой. В такой ситуации берется наименьшая из доверительных вероятностей. Следовательно, для полной погрешности следует взять α = 0, 7.

Для величины L возьмем результаты измерений из табл.2. Подставляя результаты прямых измерений в формулу (20), найдем относительную погрешность косвенного измерения:

.

По формуле (2) вычислим значение косвенно измеряемой величины:

.

Далее вычислим абсолютную погрешность:

.

Окончательный результат записывается в виде:

; ; .

В этом примере показана роль формулы относительной погрешности в анализе возможных направлений совершенствования методики измерений.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.