Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Металлические кристаллы






 

Металлы характеризуются высокой электропроводностью, которая обусловливается коллективизацией валентных электронов. С точки зрения электронной теории металл состоит из положительных ионов, погруженных в среду, образованную коллективизированными электронами. Последние могут свободно перемещаться в объеме кристалла, так как они не связаны с определенными атомами. Причем кинетическая энергия коллективизированных электронов уменьшается по сравнению с кинетической энергией валентных электронов в свободном атоме.

Связь в металлических кристаллах возникает в результате взаимодействия положительных ионов с коллективизированными электронами. Свободные электроны, которые находятся между ионами, как бы стягивают их, уравновешивая силы отталкивания между ионами одного знака. С уменьшением расстояния между ионами растет плотность электронного газа, а, следовательно, увеличиваются силы притяжения. Однако при этом начинают расти и силы отталкивания. При достижении некоторого расстояния между ионами силы уравновешиваются, и решетка становится устойчивой.

Таким образом, энергию металлического кристалла можно представить в виде следующих слагаемых:

– электростатическая энергия свободных электронов в поле положительных ионов (решетки кристалла);

– кинетическая энергия электронов;

– взаимная электростатическая потенциальная энергия положительных ионов;

– взаимная электростатическая потенциальная энергия электронов.

Можно показать, что существенны только первые два слагаемые. В качестве примера рассмотрим металлический натрий, который имеет ОЦК решетку. Выделим в решетке объем, приходящийся на один атом, проведя для этого плоскости, перпендикулярные линиям, соединяющими данный атом с соседями, и делящие указанные отрезки пополам. Получим так называемую ячейку Вигнера-Зейтца, которая для данной решетки имеет форму кубооктаэдра (см. гл.1).

Хотя электроны перемещаются по всему кристаллу, возле каждого атома, то есть в ячейке Вигнера-Зейтца, электронная плотность в среднем постоянна. Это значит, что если в металле приходится один электрон на атом, то в среднем вблизи каждого атома находится один электрон. Кубооктаэдры оказываются электрически нейтральными и электростатически взаимодействуют между собой слабо. Основная часть взаимодействия сосредоточена внутри кубоэктаэдров, то есть отвечает энергии свободных электронов в поле положительных ионов.

Вероятность нахождения электрона на расстоянии между и от данного иона определяется следующим выражением

 

,

 

где – плотность вероятности (квадрат модуля радиальной части волновой функции). Тогда энергия электрона в поле данного иона равна

 

,

 

то есть величине , усредненной по всем возможным положениям электрона. Поскольку область интегрирования равна всему объему металла, то результат интегрирования определит энергию всех свободных электронов в поле данного иона, если представляет среднюю плотность заряда в решетке.

Из выше сказанного следует, что слагаемое энергии, отвечающее взаимной потенциальной энергии электронов и ионов, будет иметь вид

 

, (2.62)

 

где – объем металла, а – некоторая постоянная (а < 0).

Определим кинетическую энергию электронов. Рассмотрение этого вопроса будет проведено в гл.4, а сейчас воспользуемся полученными в ней результатами. Средняя кинетическая энергия электронов определяется через энергию Ферми[5] и составляет

 

,

где ; – концентрация электронов. Последняя определяется количеством атомов и объемом металла . Окончательно энергия может быть представлена в виде

 

. (2.63)

 

Полная энергия металлического кристалла, согласно предыдущему, определяется двумя слагаемыми

 

. (2.64)

 

Если построить зависимость как функцию расстояния между атомами , то есть величины пропорциональной , получится кривая с минимумом в точке (рис.2.6). Значение в этом минимуме определяет энергию связи, а вторая производная в этой точке – модуль сжимаемости. Роль сил отталкивания в случае металлических кристаллов играет кинетическая энергия электронов, которая возрастает при уменьшении межатомных расстояний.

 

Рис.2.6. Зависимость энергии металлического кристалла от межатомного расстояния

 

Расчет энергии связи (теплоты испарения) металлического натрия по приведенной выше схеме дает величину около 1 эВ/атом, что хорошо совпадает с экспериментальными данными – 1, 13 эВ/атом.

В силу того, что чисто металлическая связь ненаправленная, металлы кристаллизуются в относительно плотно упакованные структуры с большими координационными числами: гранецентрированную кубическую (ГЦК), гексагональную плотно упакованную (ГПУ), объёмно-центрированную кубическую. Для ГЦК и ГПУ кристаллов плотность упаковки и координационное число одинаковы: 0, 74 и 12 соответственно. Следовательно, близость параметров свидетельствует о близости значений энергии связи в таких кристаллах. Действительно, ряд металлов может при относительно слабом внешнем воздействии изменять структуру из ГЦК на ГПУ и наоборот.

В некоторых металлах действуют не только металлические связи, обусловленные коллективизированными электронами, но и ковалентные связи, для которых характерна локализация атомных орбиталей в пространстве. В кристаллах переходных металлов преобладает ковалентная связь, возникновение которой связано с наличием незастроенных внутренних оболочек, а металлическая связь имеет подчиненное значение. Поэтому энергия связи в таких кристаллах значительно больше по сравнению со щелочными металлами. Например, у никеля она в четыре раза выше, чем у натрия.

Такие металлы могут иметь и более низкосимметричные решетки, чем у щелочных и благородных металлов.

Следует отметить, что многие вещества, которые при нормальных условиях являются диэлектриками или полупроводниками, при увеличении давления испытывают фазовые переходы и приобретают металлические свойства. Вынужденное сближение атомов усиливает перекрывание электронных оболочек, которое способствует обобществлению электронов. Например, полупроводник становится металлом при давлении ~4 ГПа, – при 16 ГПа, – при 2 ГПа. Имеются гипотезы, что при давлении ~2000ГПа в металлическое состоянии может перейти молекулярный водород, причем фаза может оказаться стабильной после снятия давления и может оказаться сверхпроводящей.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.