Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Лекция 8






Тема: Построение планов скоростей и ускорений механизма, образованного группой Ассура 2–го класса 1–го вида.

Построение плана скоростей

Планы скоростей и ускорений механизма строятся после решения задачи о его положении, причём построение планов проводится для отдельных групп Ассура, которые образовали механизм. Вначале строится план скоростей (ускорений) группы, которая присоединена элементами своих внешних кинематических пар к ведущему звену и стойке, затем строятся планы скоростей (ускорений) второй и т.д. групп, взятых в той же последовательности, в какой они присоединяются при образовании механизма.

Рассмотрим двухкривошипный шарнирный четырёхзвенник. Данные: lOA = 0.07 м, lOC = 0.04 м, lBC = 0.08 м, lAB = 0.075 м, lBD = 0.04, j1 = 30°, угловая скорость кривошипа OA постоянна и равна w1 = 15 c – 1 (рис. 1).

План положения механизма

 

 


Рисунок 1

Сначала строим план заданного положения механизма. Масштаб длин принимаем равным m l = 0.001 м /мм. Вычисляем длины отрезков, изображающие на чертеже звенья.

Для каждого положения механизма определяются скорости точек графическим методом. Вначале определяем скорость точки A, принадлежащей ведущему звену, которое вращается равномерно с постоянной угловой скоростью w1. Скорость этой точки по модулю равна

и направлена перпендикулярно оси звена OA в сторону вращения. Отложим от произвольной точки p, называемой полюсом плана скоростей, отрезок (pa). Длину отрезка (pa) выбираем равной (OA). (pa) = (OA) = 70 мм. Вычисляем масштабный коэффициент скоростей:

Строим план скоростей для группы звеньев 2 и 3. Оба звена совершают плоскопараллельное движение. Из теоретической механики известно, что скорость любой точки B плоской фигуры геометрически складывается из скорости какой-нибудь точки A, принятой за полюс, и скорости, которую точка B получает при вращении фигуры вокруг этого полюса. В этой группе звеньев все пары вращательные. Определяем скорость точки B по следующим двум векторным уравнениям:

где - скорость точки A, нам известная; - скорость точки B при вращении звена BA вокруг оси шарнира A, по модулю равная uBA = w2× lBA (w2 – угловая скорость звена BA, которая пока нам неизвестна) и направленная перпендикулярно линии BA; – скорость точки C стойки 4 (она равна нулю, так как звено 4 неподвижно); – скорость точки B при вращении звена BC вокруг оси шарнира C, по модулю равная u = w3× lBС (w3 - угловая скорость звена BC, которая пока нам неизвестная) и направленная перпендикулярно линии BC.

Построение плана скоростей ведём в такой последовательности. Строим решение первого векторного уравнения, указанного выше: из точки a проводим направление скорости изображающий - линию, перпендикулярную BA. Строим решение второго векторного уравнения, указанного выше: из точки p надо было отложить скорость , но она равна нулю, поэтому точку c совмещаем с полюсом плана скоростей p; из точки c или, что то же, p проводим направление скорости - линию, перпендикулярную BC, до пересечения с линией, проведённой перпендикулярно BA, и получаем точку b - конец вектора скорости точки B. Помещаем в полюс плана точку o. Скорость точки D находим по правилу подобия: конец вектора этой скорости должен лежать на продолжении отрезка (ab). Составляем следующую пропорцию:

Определяем скорость точки B: u B = (pb)× mu = 128× 0.015 = 1.92 м/c.

Определяем скорость точки D: u D = (pd)× mu = 169× 0.015» 2.54 м/c.

Определяем угловую скорость звена AB:

План скоростей механизма

 
 

 


Рисунок 2

Направление угловой скорости w2 звена AB может быть определено следующим образом. Мысленно прикладывая вектор к точке B, видим, что вращение звена 2 вокруг оси шарнира A, принятой за полюс, совпадает с направлением вращения часовой стрелки. Отмечаем нужное направление вращения на звене 2 в виде дуговой стрелки.

Определяем угловую скорость звена BC:

Направление угловой скорости w3 звена BC определяется таким же образом, как и w2. Мысленно прикладывая вектор к точке B, видим, что вращение звена 3 вокруг оси шарнира C, принятой за полюс, совпадает с направлением вращения часовой стрелки. Отмечаем нужное направление вращения звена 3 дуговой стрелкой.

Построение плана ускорений

Ускорения точек находятся методом плана ускорений. Вначале определяем скорость точки A, принадлежащей ведущему звену, которое вращается равномерно с постоянной угловой скоростью w1. Полное ускорение точки A определяется по формуле Так как e1 = 0, то тангенциальное ускорение a t A = 0. Тогда и ускорение точки A легко вычисляется: aA = w12× lOA. Затем строим план ускорений для группы звеньев 2 и 3. Так как движение этих звеньев плоское и все пары вращательные, то используем известную из теоретической механики теорему: ускорение любой точки B плоской фигуры геометрически складывается из ускорения какой-нибудь точки A, принятой за полюс, и ускорения, которое точка B получает при вращении фигуры вокруг этого полюса. Этот план строится по таким двум векторным уравнениям:

где - полное ускорение точки A, равное нормальному ускорению , так как звено 1 (кривошип) вращается равномерно и угловое ускорение равно нулю, следовательно равно нулю и тангенциальное ускорение ,

aA = aAn = w12× lOA

и направленное параллельно линии OA от точки A к точке O (к центру кривизны траектории);

- нормальное ускорение точки B во вращательном движении звена AB вокруг точки A, по модулю равное

и направленное параллельно линии AB от точки B к точке A ();

- тангенциальное ускорение точки B в том же движении звена AB, по модулю равное

aBA t = e2× lAB

(e2 - угловое ускорение звена AB, пока нам неизвестное) и направленное перпендикулярно линии AB;

- ускорение точки C, равное нулю, так как звено 4 неподвижно;

- нормальное ускорение точки B во вращательном движении звена BC вокруг точки C, по модулю равное

и направленное параллельно линии BC от точки B к точке C ();

- тангенциальное ускорение точки B в том же движении звена BC, по модулю равное

aBC t = e3× lBC

(e3 - угловое ускорение звена BC, пока нам неизвестное) и направленное перпендикулярно линии BC.

Построение плана ускорений ведём в следующей последовательности. Строим решение первого векторного уравнения, указанного выше, для чего от полюса плана p откладываем отрезок (p a), изображающий ускорение , параллельно линии OA. Длину отрезка (p a) принимаем равной 70 мм, отчего масштаб ускорений будет

От точки a откладываем отрезок (anBA), изображающий ускорение . Длина отрезка (anBA) вычисляется так:

Через точку nBA проводим направление ускорения - линию, перпендикулярную линии AB. Переходим к построению решения второго векторного уравнения, указанного выше. Для этого от полюса плана p откладываем вектор ускорения , но оно равно нулю, поэтому точка c совпадает с точкой p. От точки p откладываем отрезок (p nBC), изображающий ускорение . Длина отрезка (p nBC) вычисляется так:

Через точку nBC проводим направление ускорения - линию, перпендикулярную линии BC. Точка пересечения её с линией, проведённой перпендикулярно AB, даёт точку b - конец вектора ускорения точки B. Соединяем точки b и a и получаем вектор полного ускорения точки B при вращении звена AB относительно точки A, т.е. Точку o совмещаем с точкой p (полюсом плана). На этом заканчиваем построение плана ускорений механизма. Конец вектора ускорения точки D найдём по правилу подобия:

Соединив точку d с полюсом плана p, получаем отрезок (p d), изображающий абсолютное ускорение точки D.

 

Величины абсолютных ускорений точек B и D определяются так:

aB = (p b)× m a = 232× 0.225» 52 м× c – 2;

aD = (p d)× m a = 320× 0.225 = 72 м× c – 2.

По правилу подобия найдём ускорения центров масс подвижных звеньев. Точки S 1, S 2 и S 3 находятся на серединах соответствующих звеньев. На плане ускорений это будут векторы: (p s 1), (p s 2) и (p s 3). Определяем абсолютные величины ускорений этих центров масс:

aS1 = (p s 1) × m a = 35× 0.225» 7.9 м× c – 2;

aS2 = (p s 2) × m a = 194× 0.225» 44 м× c – 2;

aS3 = (p s 3)× m a = 116× 0.225» 26 м× c – 2.

Величина углового ускорения звена AB равна:

Направление углового ускорения e2 звена 2 (звена AB) может быть определено следующим образом. Перенося мысленно вектор в точку B, видим из точки A, что направление e2 совпадает с направлением вращения часовой стрелки. Обозначаем направление углового ускорения e2 на плане положения звена 2 дуговой стрелкой.

Величина углового ускорения звена BC равна:

Направление углового ускорения e3 звена 3 (звена BC) может быть определено таким же образом, как и e2. Перенося мысленно вектор в точку B, видим из точки C, что направление e3 совпадает с направлением вращения часовой стрелки. Обозначаем направление углового ускорения e3 на плане положения звена 3 дуговой стрелкой. План ускорений механизма приведён на рис. 3.

План ускорений механизма

 
 

 

 


Рисунок 3






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.