Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Классическая система зажигания






Классическая система батарейного зажигания с одной катушкой и многоискровым механическим распределителем до сих пор широко распространена на находящихся в эксплуатации автомобилях.

Главным достоинством этой системы является ее простота, обеспечиваемая двойной функцией механизма распределителя: прерывание цепи постоянного тока для генерирования высокого напряжения и синхронное распределение высокого напряжения по цилиндрам двигателя.

На рис. 3 представлена принципиальная схема классической (батарейной) системы зажигания.

Схема состоит из следующих элементов:

- источника тока - аккумуляторной батареи 1;

- катушки зажигания (индукционной катушки) 2, которая преобразует токи низкого напряжения в токи высокого напряжения. Между первичной и вторичной обмотками катушки зажигания имеет место автотрансформаторная связь;


Рис. 3 - Принципиальная схема классической системы зажигания

 

- прерывателя 3, содержащего рычажок 4 с подушечкой 5 из текстолита, поворачивающийся около оси;

- контактов прерывателя 6. Неподвижный контакт прерывателя присоединен к " массе", подвижной контакт укреплен на конце рычажка. Если подушечка не касается кулачка, контакты замкнуты под действием пружины. Когда подушечка находит на грань кулачка, контакты размыкаются. Прерыватель управляет размыканием и замыканием контактов и, соответственно, моментом подачи искры;

- кулачка 7, имеющего число граней, равное числу цилиндров;

- конденсатора первичной цепи 8 (С1), подключенного параллельно контактам 6, который является составным элементом колебательного контура в первичной цепи после размыкания контактов;

- распределителя 9, включающего в себя бегунок 10, крышку 11, на которой расположены неподвижные боковые электроды 12 (число которых равно числу цилиндров двигателя) и неподвижный центральный электрод, который подключается через высоковольтный провод к катушке зажигания. Боковые электроды через высоковольтные провода соединяются с соответствующими свечами зажигания. Высокое напряжение к бегунку 10 подается через центральный электрод с помощью скользящего угольного контакта. На бегунке имеется электрод 13, который отделен воздушным зазором от боковых электродов 12. Бегунок 10 распределителя и кулачок 7 прерывателя находятся на одном валу, который приводится во вращение зубчатой передачей от распределительного вала двигателя с частотой вдвое меньшей частоты вращения коленчатого вала. Прерыватель и распределитель расположены в одном аппарате, называемом распределителем зажигания;

- свечей зажигания 15, число которых равно числу цилиндров двигателя;

- выключателя зажигания 16;

- добавочного резистора 17 (Rд), который уменьшает тепловые потери в катушке зажигания, дает возможность усилить зажигание (при пуске двигателя Rд шунтируется контактами реле 18 (одновременно с включением стартера). Добавочный резистор изготовляют из нихрома или константана и наматывают на керамический изолятор.

Принцип работы классической системы батарейного зажигания состоит в следующем. При вращении кулачка 7 контакты 6 попеременно замыкаются и размыкаются. После замыкания контактов (в случае замкнутого выключателя зажигания 16) через первичную обмотку катушки зажигания 2протекает ток, нарастая от нуля до определенного значения (тока разрыва) за данное время замкнутого состояния контактов. При малых частотах вращения валика 14 распределителя 9 ток может нарастать до установившегося значения, определенного напряжением аккумуляторной батареи и омическим сопротивлением первичной цепи (установившийся ток). Протекание первичного тока вызывает образование магнитного потока, сцепленного с витками первичной и вторичной обмоток катушки зажигания 2, и накопление электромагнитной энергии.

После размыкания контактов прерывателя, как в первичной, так и во вторичной обмотке индуцируется ЭДС самоиндукции. Согласно закону индукции вторичное напряжение тем больше, чем быстрее исчезает магнитный поток, созданный током первичной обмотки, больше первичный ток в момент разрыва и больше число витков во вторичной обмотке. В результате переходного процесса во вторичной обмотке возникает высокое напряжение, достигающее 15 - 20 кВ. В первичной обмотке также индуцируется ЭДС самоиндукции, достигающая 200 - 400 В, направленная в ту же сторону, что и первичный ток, и стремящаяся задержать его исчезновение. При отсутствии конденсатора 8 ЭДС самоиндукции вызывает образование между контактами прерывателя во время их размыкания сильной искры или, точнее, дуги. При наличии конденсатора 8 ЭДС самоиндукции создает ток, заряжающий конденсатор. В следующий период времени конденсатор разряжается через первичную обмотку катушки и аккумуляторную батарею. Таким о6разом, конденсатор 8 практически устраняет искрообразование в прерывателе, обеспечивая долговечность контактов и индуцирование во вторичной обмотке достаточно высокой ЭДС.

Вторичное напряжение подводится к бегунку распределителя, а затем через электроды в крышке и высоковольтные провода поступает к свечам зажигания соответствующих цилиндров двигателя.

 
 

На рис. 4. приведены характеристики электрических сигналов в первичной и вторичной цепях системы зажигания.

 

Рис. 4. Характеристики электрических сигналов в первичной и вторичной цепях системы зажигания: 1 - первичный ток; 2 - импульс первичного напряжения; 3 - импульс вторичного напряжения; ЗАМ - контакты замкнуты; РАЗ - контакты разомкнуты

 

Недостатки классической системы зажигания

Классическая система зажигания обладает рядом достоинств, к которым следует отнести простоту конструкции и невысокую стоимость аппаратов зажигания, а также возможность регулирования угла опережения зажигания в широких пределах без изменения величины вторичного напряжения.

Вместе с тем классическая система зажигания имеет ряд принципиальных недостатков, связанных с работой механического прерывателя и механических автоматов опережения зажигания:

– недостаточная величина вторичного напряжения на высоких и низких частотах вращения коленчатого вала двигателя и, как следствие, малый коэффициент запаса по вторичному напряжению, особенно для многоцилиндровых и высокооборотных двигателей, а также при экранировании высоковольтных проводов;

– недостаточная энергия искрового разряда по причине ограничения уровня запасенной энергии в первичной цепи;

– чрезмерный нагрев катушки зажигания в зоне низких частот вращения коленчатого вала двигателя и особенно при остановившемся двигателе, если замок зажигания включен и контакты прерывателя замкнуты;

– нарушение рабочего зазора в контактах в процессе эксплуатации и, как следствие этого, необходимость зачистки контактов, т. е. систематический уход во время эксплуатации; низкий срок службы контактов прерывателя;

– низкий срок службы контактов прерывателя;

– повышенный асинхронизм момента искрообразования по цилиндрам двигателя при эксплуатации вследствие износа кулачка;

– высокая погрешность момента искрообразования вследствие разброса характеристик механических автоматов опережения зажигания в процессе эксплуатации.

Перечисленные недостатки классической батарейной системы зажигания приводят в итоге к ухудшению процесса сгорания топливо–воздушной смеси, а, следовательно, к потере мощности двигателя и увеличению токсичности отработавших газов.

 

3. Контактно–транзисторная система зажигания

 

Развитие современного двигателестроения происходит в направлении повышения экономичности и снижения удельного веса при одновременном увеличении частоты вращения коленчатого вала двигателя и степени сжатия. Степень сжатия составляет 7, 0...8, 5, но на перспективных автомобилях устанавливаются двигатели со степенью сжатия 9, 0...10 и более. Такое повышение степени сжатия требует значительного увеличения вторичного напряжения, необходимого для пробоя искрового промежутка свечи.

Таким образом, к современной системе зажигания предъявляются более высокие требования:

– увеличение вторичного напряжения, развиваемого катушкой зажигания, при одновременном повышении надежности;

– энергия искрового разряда должна быть достаточной для воспламенения топливо–воздушной смеси на всех режимах работы двигателя (15...50 мДж и более);

– устойчивое искрообразование в различных эксплуатационных условиях (загрязнение свечей, колебания температуры, колебания напряжения бортовой сети и т.д.);

– устойчивая работа при значительных механических нагрузках;

– простота обслуживания системы;

– минимальное потребление энергии источников питания;

– минимальные масса, габариты и низкая стоимость.

Такие требования не могут быть удовлетворены при использовании классической системы зажигания, так как в этом случае практически единственным реальным способом увеличения вторичного напряжения является увеличение силы тока разрыва. Однако увеличение силы тока разрыва свыше определенного значения (3, 5...4, 0 А при 12 В) приводит к ненадежной работе контактов прерывателя и резкому сокращению их срока службы.

Перечисленные требования к системе зажигания вызвали необходимость создания новых устройств, позволяющих улучшить условия воспламенения топливо–воздушной смеси в цилиндрах двигателя.

Одним из путей повышения развиваемого системой зажигания вторичного напряжения является применение полупроводниковых приборов, работающих в качестве управляемых ключей, служащих для прерывания тока в первичной обмотке катушки зажигания. Наиболее широкое использование в качестве полупроводниковых реле нашли мощные транзисторы, способные коммутировать токи амплитудой 10 А и выше в индуктивной нагрузке без какого–либо искрения и механического повреждения, характерных для контактов прерывателя. Функцию электронного реле могут выполнять также и силовые тиристоры, но широкой промышленной реализации в системах зажигания с накоплением энергии в индуктивности они не нашли.

Принципиальная схема контактно–транзисторной системы зажигания (КТСЗ) (рис. 5) в основном состоит из тех же элементов, которые характерны для обычной контактной (классической) системы зажигания, и отличаются от нее наличием транзистора (транзисторного коммутатора) и отсутствием конденсатора, ранее шунтировавшего контакты прерывателя.

 

 
 

Рис. 5. Принципиальная схема контактно–транзисторной системы зажигания:

8 - транзистор; остальные обозначения соответствуют принципиальной схеме классической системы зажигания (рис. 4.10, стр.31).

 

Как видно из схемы, контакты прерывателя коммутируют только незначительный ток управления транзистором Iб, при этом ток силовой цепи (ток разрыва) коммутируется транзистором.

 

Достоинства и недостатки КТСЗ.

 

Преимущества транзисторной системы зажигания могут быть реализованы лишь при применении специальной катушки зажигания, имеющей низкоомную первичную обмотку с малой индуктивностью и большой коэффициент трансформации. В этом случае необходимые энергия искрообразования и вторичное напряжение достигаются соответствующим увеличением тока разрыва и коэффициентом трансформации катушки зажигания.

Применять же контактно–транзисторную систему зажигания с обыкновенной катушкой зажигания нецелесообразно, т.к. при этом, кроме увеличения срока службы контактов прерывателя, никаких преимуществ получить не удается. Более того, в результате неизбежного падения напряжения на транзисторе общая энергия искрообразования уменьшится.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.