Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






ПЗ.6. Непрерывные случайные величины. Плотность распределения вероятностей.




Расчёт вероятности случайной величины (события) Е базируется на подсчёте числа реализаций данного события в процессе испытаний (см. вопрос П.3.1) Критерии оценки реализации того или иного события всегда дискретны, так как ограничены снизу дискретностью принятой шкалы измерений (см. вопрос П.3.3). В тех случаях, когда можно пренебречь дискретностью измерений интересующей нас случайной величины Х, удобно представлять величину Х как изменяющуюся непрерывно в некотором интервале (α, β). Закон распределения вероятностей непрерывной случайной величины Х должен позволять находить вероятность её попадания в любой интервал (х1, х2) внутри интервала (α, β).

Для облегчения дальнейших рассуждений введём понятие функции случайной величины Х. Это такая случайная величина Y, которая принимает значение y = f(x) всякий раз, когда величина Х принимает значение х. Вероятность попадания величины Х в интервал (х1, х2) обозначим P(x1 < X < x2).

Будем считать, что вероятность попадания значения Х в интервал малой длины ∆х > 0 пропорциональна ∆х с точностью до бесконечно малых более высокого, чем ∆х, порядка, т.е.:

,

или dP = p(x)*dx, причём Ө(∆х)/∆х→0, ∆х→dx при ∆x→0.

Переходя к пределу при ∆x→0, находим точное значение функции p(x):

. (П.3.16)

Функция p(x) есть плотность распределения вероятностей случайной величины Х.

Исходя из выражения (П.3.16) путём интегрирования элементов вероятности p(x)dx находим значение вероятности попадания случайной величины Х в любой интервал (х1, х2):

. (П.3.17)

Существование интервала (П.3.17) является доказательством непрерывности случайной величины Х. Если известно распределение P(x), то согласно (П.3.17) плотность распределения может быть найдена путём дифференцирования функции P(α < X < x) (где α – минимально возможное значение Х):

.

Функцию P(α < X < x) обычно отображают в виде P(X < x) и называют функцией распределения вероятности.

Если случайная величина Х существует лишь в интервале (α, β), то естественным нормирующим условием для функции p(x) является условие:

,

что соответствует достоверности ограничения значений величины Х интервалом (α, β).


mylektsii.ru - Мои Лекции - 2015-2019 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал