Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Замечание. В режимах .TRAN и .DC значения источников Exxx, Ixxx вычисляются согласно приведенным в фигурных скобках выражениям






В режимах.TRAN и.DC значения источников Exxx, Ixxx вычисляются согласно приведенным в фигурных скобках выражениям. Если это выражение представляет собой линейную функцию нескольких переменных, то в режиме.АС данный источник представляет собой линейный управляемый источник. При этом, если в выражение входит переменная TIME, она полагается равной нулю. Если же это выражение представляет собой нелинейную функцию одной переменной, то после расчета режима цепи по постоянному току выражение в фигурных скобках линеаризуется и в частотной области такой источник представляет собой линеаризированный управляемый источник. Нелинейную функцию нескольких переменных при расчете частотных характеристик использовать нельзя - результаты будут непредсказуемы. Эти же замечания справедливы и для описываемого ниже табличного задания управляемых источников.

Табличное описание передаточной функции вводится по формату

Еххх < +узел> < -узел> TABLE {< выражение> } «аргумент> < функция> > *

Gxxx < +узел> < -узел> TABLE {< выражение> } «аргумент> < фунщия> > *

Входом таблицы является < выражение>, которое содержит любую комбинацию напряжений и токов. При обращении к управляемому источнику вычисляется значение выражения и берется значение функции из таблицы с помощью линейной интерполяции между опорными точками, задаваемыми парами чисел (< аргумент>, < функция>). Например, ВАХ туннельного диода, рассматриваемого как нелинейная проводимость (рис. 4.30), может быть задана в виде

GR 1 2TABLE{V(GR)}=(0.0)(.01.1mA)

+ (.02, 1.1mA) (0.05, 2mA) (.06, 3mA) (.065, 3.2mA) (.8, 1.5mA) (1, 3mA) (1.5, 5mA)

Координаты опорных точек задаются в порядке возрастания аргумента.

Заметим, что отсутствие аппроксимации табличных значений сплайнами более высоких порядков, чем линейная интерполяция, в ряде случаев приводит к слишком большим ошибкам.

Линейные функциональные блоки моделируются в терминах соотношения между выходными и входными переменными в частотной области. По директиве.АС определяются значения комплексного коэффициента передачи блока на каждой частоте. При расчете рабочей точки по постоянному току и по директиве.DC берется значение коэффициента передачи на нулевой частоте (поэтому изображения по Лапласу всех узловых потенциалов не должны иметь составляющих типа 1/s). По директиве.TRAN выходная переменная блока вычисляется как интеграл Дюамеля (свертка входного воздействия с импульсной характеристикой блока), что значительно увеличивает длительность расчетов. Возможны следующие варианты задания линейных блоков.

Передаточная функция управляемого источника задается с помощью преобразования Лапласа:

Еххх < +узел> < -узел> LAPLACE {< выражение> }= + {< передаточная функция в s-области> }

Gxxx < +узел> < -узел> LAPLACE {< выражение> }= + {< передаточная функция в s-области> }

Например, передаточная функция активного RC-фильтра задается следующим образом:

EARC 2 О LAPLACE {V(9)}={5/(H-0.01*s)}

Фильтр с чебышевской передаточной функцией задается в виде

Еххх < +узел> < -узел> CHEBYSHEV {< выражение> }=< тип> + < граничная частота> * < затухание> *

Gxxx < +узел> < -узел> CHEBYSHEV {< выражение> }=< тип> + < граничная частота> * < затухание> *

Здесь < тип> - тип фильтра, принимающий значения: LP - фильтр нижних частот, HP - фильтр верхних частот, ВР - полосовой фильтр, BR - режекторный фильтр.

Для задания желаемой характеристики фильтра задается список граничных частот (для ФНЧ и ФВЧ задаются две частоты, для ПФ и РФ - четыре) и затем список затуханий на этих частотах в децибелах; порядок следования граничных частот безразличен. Приведем примеры:

Е1 3 4 CHEBYSHEV {V(10)}=LP 800 1.2К 0.10В 50dB

Е2 5 6 CHEBYSHEV {V(10)}=BP 800 1.2К 2К ЗК 0.1dB 50dB

Табличное описание комплексной передаточной функции в частотной области задается по формату

Еххх < +узел> < -узел> FREQ {< выражение> }=[KEYWORD] + < < частота>, < модуль>, < фаза> > * [DELAY]=< задержка> ]

Сххх< +узел> < -узел> FREQ {< выражение> }=[ KEYWORD ] + < < частота>, < модуль>, < фаза> > * [DELAY]=< задержка> ]

Здесь частота задается в герцах, модуль передаточной функции - в децибелах, фаза передаточной функции - в градусах. Значения опорных точек указываются в порядке возрастания частоты. Максимальное количество точек - 2048. Например, передаточная функция типа фильтра верхних частот задается так:

EHIGHPASS 2 О FREQ (V(9)} (0, -60, 69.1) (2kHz, -3, 45) (5kHz, 0, 0)

С помощью ключевого слова KEYWORD изменяется способ задания таблицы передаточной функции. Оно может принимать следующие значения:

  • MAG - задание абсолютных значений передаточной функции вместо децибел;
  • DB - задание значений передаточной функции в децибелах (принимается по умолчанию);
  • RAD - задание фазы в радианах;
  • DEG - задание фазы в градусах (принимается по умолчанию);
  • R_I - задание действительной и мнимой части передаточной функции вместо ее модуля и фазы.

Ключевое слово DELAY задает дополнительную задержку, которая принимается во внимание при расчете фазовой характеристики фильтра.

В качестве еще одного примера составим структурную схему моделирования рассмотренной выше системы дифференциальных уравнений:

dx 1 /dt = -0, 3x 1 + х 2 + х 1 2 - 3x 1 x 2 - x 1 ,

dx 2 /dt = 0, 24 - 0, 6x 2 + 1 х 2 - 6х 1 2 х 2

с помощью интеграторов. На рис. 4.31, а представлена функциональная схема моделирования этой системы уравнений, а на рис. 4.31, б - ее реализация в компонентном базисе программы PSpice. В ней использованы управляющие источники напряжения E11, EI2, заданные с помощью преобразования Лапласа и выполняющие операции интегрирования, а также нелинейные управляемые источники напряжения EF1, EF2 для вычисления правых частей системы уравнений. На входном языке программы PSpice задание на решение рассматриваемой системы уравнений имеет вид:

Laplace transforms

EM 1 0 LAPLACE {V(3)}={1/s}

EI2 2 0 LAPLACE {V(4)}={1/s}

EF1 3 0 POLY(3) (1, 0) (2, 0) (0, 0) 0-0.3101-300001

EF2 4 0 POLY(3) (1, 0) (2, 0) (0, 0) 0.6 0 -0.6 00400000-6

R1 1 01E9

R2201E9

R3301E9

R4401E9

.ICV(1)=0V(2)=0.4

.TRAN 0.1s 40s SKIPBP

На рис. 4.31, в показана реализация этой же схемы с помощью графического редактора PSpice Schematics. В ней использованы символы интеграторов INTEG и управляемых источников напряжения EVALUE из библиотеки символов amb.slb (см. Приложение 2 [7]). Резисторы R1, R2 на этой схеме необходимы только для соблюдения правил составления топологии схемы, согласно которым к выходным зажимам компонентов - в данном случае интеграторов - должна быть подключена нагрузка. Если это неудобно, то нужно отредактировать символ INTEGER, изменив атрибуты вывода Out (выход), изменив в разделе If unconnected (если вывод не подсоединен) значение параметра Float=UniqueNet - создать узел для подключения маркера. После этого резисторы Rl, R2 можно из схемы на рис. 4.21, в удалить.

а)

б)

в)

Рис. 4.21. Функциональная схема моделирования системы двух дифференциальных уравнений {а), ее реализация в виде принципиальной схемы, созданной вручную (б) и с помощью PSpice Schematics (в)

 

Gif

A.gif

B.gif

C.gif

D.gif






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.