Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Точеные дефекты






Одним из распространенных несовершенств кристаллического строения является наличие точечных дефектов: вакансий, дислоцированных атомов и примесей. (рис.1.)

Рис.1. Точечные дефекты

Вакансия – отсутствие атомов в узлах кристаллической решетки, «дырки», которые образовались в результате различных причин. Образуется при переходе атомов с поверхности в окружающую среду или из узлов решетки на поверхность (границы зерен, пустоты, трещины и т. д.), в результате пластической деформации, при бомбардировке тела атомами или частицами высоких энергий (облучение в циклотроне или нейтронной облучение в ядерном реакторе). Концентрация вакансий в значительной степени определяется температурой тела. Перемещаясь по кристаллу, одиночные вакансии могут встречаться. И объединяться в дивакансии. Скопление многих вакансий может привести к образованию пор и пустот.

Дислоцированный атом – это атом, вышедший из узла решетки и занявший место в междоузлие. Концентрация дислоцированных атомов значительно меньше, чем вакансий, так как для их образования требуются существенные затраты энергии. При этом на месте переместившегося атома образуется вакансия.

Примесные атомы всегда присутствуют в металле, так как практически невозможно выплавить химически чистый металл. Они могут иметь размеры больше или меньше размеров основных атомов и располагаются в узлах решетки или междоузлиях.

Точечные дефекты вызывают незначительные искажения решетки, что может привести к изменению свойств тела (электропроводность, магнитные свойства), их наличие способствует процессам диффузии и протеканию фазовых превращений в твердом состоянии. При перемещении по материалу дефекты могут взаимодействовать.

Линейные дефекты:

Основными линейными дефектами являются дислокации. Априорное представление о дислокациях впервые использовано в 1934 году Орованом и Тейлером при исследовании пластической деформации кристаллических материалов, для объяснения большой разницы между практической и теоретической прочностью металла.

Дислокация – это дефекты кристаллического строения, представляющие собой линии, вдоль и вблизи которых нарушено характерное для кристалла правильное расположение атомных плоскостей.

Плотность дислокаций в кристалле определяется как среднее число линий дислокаций, пересекающих внутри тела площадку площадью 1 м2, или как суммарная длина линий дислокаций в объеме 1 м3

(см-2; м-2)

 


 

7. Первый закон Кеплера (1609 г.): Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце. На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка P траектории называется перигелием, точка A, наиболее удаленная от Солнца, называется афелием или апогелием. Расстояние между афелием и перигелием – большая ось эллипса. Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым. Второй закон Кеплера (1609 г.):

Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Третий закон Кеплера (1619 г.): Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит:

 

Третий закон Кеплера выполняется для всех планет Солнечной системы с точностью выше 1 %. На рис. 1.24.4 изображены две орбиты, одна из которых круговая с радиусом R, а другая – эллиптическая с большой полуосью a. Третий закон утверждает, что если R = a, то периоды обращения тел по этим орбитам одинаковы.

есмотря на то, что законы Кеплера явились важнейшим этапом в понимании движения планет, они все же оставались только эмпирическими правилами, полученными из астрономических наблюдений. Законы Кеплера нуждались в теоретическом обосновании. Решающий шаг в этом направлении был сделан Исааком Ньютоном, открывшим в 1682 году закон всемирного тяготения:

где M и m – массы Солнца и планеты, r – расстояние между ними, G = 6, 67·10–11 Н·м2/кг2 – гравитационная постоянная. Ньютон первый высказал мысль о том, что гравитационные силы определяют не только движение планет Солнечной системы; они действуют между любыми телами Вселенной. В частности, сила тяжести, действующая на тела вблизи поверхности Земли, имеет гравитационную природу.


 

8. Элемента́ рная части́ ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части.

Фундамента́ льная части́ ца — бесструктурная элементарная частица, которую до настоящего времени не удалось описать как составную. В настоящее время термин применяется преимущественно для лептонов и кварков (по 6 частиц каждого рода, вместе с античастицами, составляют набор из 24 фундаментальных частиц) в совокупности с калибровочными бозонами (частицами-переносчиками фундаментальных взаимодействий).

Фундаментальные взаимодействия. Процессы, в которых участвуют различные элементарные частицы, сильно различаются по энергиям и характерным временам их протекания. Согласно современным представлениям, в природе осуществляется четыре вида взаимодействий, которые не могут быть сведены к другим, более простым видам: сильное, электромагнитное, слабое и гравитационное. Эти виды взаимодействий называют фундаментальными.

Сильное (или ядерное) взаимодействие – наиболее интенсивное. Оно обуславливает исключительно прочную связь между протонами и нейтронами в ядрах атомов. В сильном взаимодействии могут принимать участие только тяжелые частицы – адроны (мезоны и барионы). Сильное взаимодействие проявляется на расстояниях порядка 10–15 м и менее. Поэтому его называют короткодействующим.

Электромагнитное взаимодействие. В нем могут принимать участие любые электрически заряженные частицы, а так же фотоны – кванты электромагнитного поля. Электромагнитное взаимодействие ответственно, в частности, за существование атомов и молекул. Оно определяет многие свойства веществ в твердом, жидком и газообразном состояниях. Кулоновское отталкивание протонов приводит к неустойчивости ядер с большими массовыми числами. Электромагнитное взаимодействие обуславливает процессы поглощения и излучения фотонов атомами и молекулами вещества и многие другие процессы физики микро- и макромира.

Слабое взаимодействие – определяет ход наиболее медленных процессов, протекающих в микромире. В нем могут принимать участие любые элементарные частицы, кроме фотонов. Слабое взаимодействие ответственно за протекание процессов с участием нейтрино или антинейтрино, например, β -распад нейтрона

В физике элементарных частиц калибровочные бозоны — это бозоны, которые действуют как переносчики фундаментальных взаимодействий природы. Точнее, элементарные частицы, взаимодействия которых описываются калибровочной теорией, оказывают действие друг на друга при помощи обмена калибровочными бозонами, обычно как виртуальными частицами. В Стандартной модели существует три типа калибровочных бозонов: фотоны, W- и Z-бозоны и глюоны. Каждый тип соответствует одному из трех описываемых в рамках Стандартной модели взаимодействий: фотоны — калибровочные бозоны электромагнитного взаимодействия, W- и Z-бозоны переносят слабое взаимодействие, а глюоны переносят сильное взаимодействие. Из-за конфайнмента изолированные глюоны не появляются при низких энергиях. Впрочем, при низких энергиях возможно наблюдение массивных глюболов, существование которых на 2010 год экспериментально не подтверждено.

В теориях великого объединения (ТВО) появляются дополнительные калибровочные X- и Y-бозоны. Они управляют взаимодействиями между кварками и лептонами, нарушая закон сохранения барионного числа и вызывая распад протона. Эти бозоны имеют огромную по квантовым меркам массу (возможно, даже большую, чем W- и Z-бозоны) из-за нарушения симметрии. До сих пор не получено ни одного экспериментального подтверждения существования этих бозонов (например, в серии наблюдений за распадами протонов на японской установке SuperKamiokande). Четвёртое фундаментальное взаимодействие, гравитация, также может переноситься бозоном, который был назван гравитоном. При отсутствии как экспериментальной исследованности этого вопроса, так и математически последовательной общепризнанной теории квантовой гравитации, в действительности окончательно не известно, является ли гравитон калибровочным бозоном или нет. Роль калибровочной инвариантности в ОТО играет похожая симметрия — инвариантность диффеоморфизма. (См. Калибровочная теория гравитации).

В этой модели протон должен быть нестабильной частицей, правда, с большим временем жизни. Если сильное и электрослабое взаимодействия являются разными проявлениями более общего взаимодействия, то кварки и лептоны должны быть компонентами одного и того же мультиплета. Следовательно, возможны процессы, в которых кварки могут превращаться в лептоны. Это значит, что протон, состоящий из кварков, не может быть абсолютно стабильным, а может распадаться, превращаясь в более легкие частицы. Например, возможны распады

p → π 0 + e+,
p → π + + .

По оценкам в рамках единой теории сильных и электрослабых взаимодействий время жизни протона ~1032 лет. В настоящее время ведутся интенсивные эксперименты по поиску нестабильности протона.

 

В стандартной модели считается, что частицы приобретают массу в результате механизма Хиггса. Поле Хиггса заполняет все пространство, и все частицы приобретают массу при взаимодействии с ним. Квантами поля Хиггса является бозон Хиггса. Считается, что хиггсовский бозон имеет нулевой спин. Масса его по экспериментальным оценкам должна быть больше 5 ГэВ.
В этой модели распад нейтрона

n → p + e- + e

Рис. 17 Диаграмма распада d-кварка

на кварковом уровне выглядит как бы проходящим в два этапа (рис.17). На первом этапе происходит превращение d-кварка в u-кварк и W-бозон

d → u + W

на втором W --бозон распадается, превращаясь в электрон и антинейтрино

W → e- + e.

По аналогии с сильным взаимодействием члены одного семейства, порождаемые W или W+-бозоном объединяются в слабые левоспиральные изоспиновые дублеты

и

со слабым изоспином T = 1/2, которым приписываются значения T3 = +1/2 ( e, u) и T3 = -1/2 (e, d). У антифермионов проекции слабого изоспина имеют противоположные знаки.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.