Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Краткие теоретические сведения. Под прокаливаемостью понимают способность стали закаливать­ся на определенную глубину






Под прокаливаемостью понимают способность стали закаливать­ся на определенную глубину. Прокаливаемостъ является одним из главных факторов, определяющих свойства стали. Сталь, использу­емая для ответственных деталей и конструкций, должна иметь высо­кую прокаливаемостъ.

Для получения структуры мартенсита при закалке необходимо, чтобы реальная скорость охлаждения стали была выше некоторой критической скорости Vкр. Под критической скоростью понимают та­кую минимальную скорость закалки, при которой аустенит превраща­ется в мартенсит, а не распадается на феррито-цементитную смесь. Для различных материалов критические скорости закалки различны. При закалке детали реальная скорость охлаждения уменьшается по мере удаления от поверхности. Наибольшей она получается на поверхности, наименьшей — в центре сечения.

Если скорость охлаждения в центре сечения окажется больше критической для данной стали, то деталь закалится по всему сече­нию, т.е. прокалится насквозь (рис. 17.1 а). Если же скорость ох­лаждения в центре – меньше критической, то сердцевина де­тали окажется не прокалившейся (рис. 17.1 6).

Прокаливаемость стали тем выше, чем больше реальная ско­рость охлаждения и ниже Vкр. Основные факторы, увеличивающие реальную скорость охлаждения: чисто­та поверхности детали (отсутствие окалины и обезуглероженного слоя), а также среда, обеспечивающая достаточно интенсивное охлажде­ния и т.д.

Факторы, снижающие Vкр и повышающие прокаливаемость:

1. Все легирующие элементы, растворенные в аустените за исключением кобальта, уменьшают критическую скорость охлаждения и повышают прокаливаемость стали. Наиболее эффективным является использование комплексного легирования. В этом случае положительное влияние отдельных элементов на прокаливаемость увеличивается.

 

  Рисунок 17.1 – Схема прокаливаемости цилиндрического образца: а) сквозная прокаливаемость, 6) несквозная прокаливаемостъ. 1- кривая распределения реальных скоростей охлаждения по диаметру цилиндра; 2- критическая скорость охлаждения; 3- слой, закаленный на мартенсит

2. С повышением содержания углерода аустенит становится более устойчивым к распаду, т.е. критическая скорость охлаждения уменьшается. Наименьшей критической скоростью и наилучшей прокаливаемостъю обладают стали, близкие по составу к эвтектоидной. Зазвтектоидные стали имеют более высокую критическую скорость охлаждения, так как перед закалкой их структура состоит из аустенита и вторичного цементита, который снижает устойчивость аустенита (облегчает образование феррито-цементитной смеси).

3. Чем однороднее аустенит, тем более он устойчив против распада на феррито-цементитную смесь, т.е. тем ниже Vкр и больше прокаливаемость.

4. С увеличением величины зерна аустенита уменьшается суммарная межзеренная поверхность, на которой начинается эвтектоидный распад и прокаливаемость увеличивается.

Легирование стали является самым сильным фактором, влияющим на прокаливаемость. Во-первых, повышение степени легированности обеспечивает сквозную прокаливаемость в больших сечениях. Во-вторых, использование легированных сталей вместо углеродис­тых позволяет проводить их закалку в масле и даже на воздухе, что снижает закалочные напряжения.

В зависимости от прокаливаемости все конструкционные стали можно разделить на три группы:

1. Стали пониженной прокаливаемости. Сквозная прокаливаемостъ достигается закалкой в воде при диаметре цилиндрических образцов 10-15 мм. К этой группе отно­сятся углеродистые и низколегированные стали с содержанием ле­гирующих элементов 3-4 %.

2. Стали средней прокаливаемости. Сквозная прокаливаемость достигается закалкой в масле при диаметре цилиндрических образцов 100-150 мм. К этой группе от­носятся легированные стали с содержанием легирующих элементов 6-12 %.

3. Стали высокой прокаливаемости. Сквозная прокаливаемость достигается закалкой в масле цилиндрических образцов, диаметром > 200 мм. Это высоколе­гированные стали с содержанием легирующих элементов 12-30 %.

Диаметр цилиндрического образца, который в данном охладите­ле прокаливается насквозь, называется критическим диаметром. Критический диаметр служит характеристикой прокаливаемости ста­ли.

Другой простейшей характеристикой прокаливаемости стали в определенном охладителе служит глубина прокаливаемости.

За глу­бину прокаливаемости конструкционных сталей условно принимают расстояние от поверхности детали до слоя с полумартенситной структурой (50 % троостита и 50 % мартенсита).

Глубину прокаливаемости легко определить, измеряя твердость от поверхности вглубь изделия, и имея справочные данные о твер­дости сталей разного состава с полумартенситной структурой (HRCпм в табл. 17.1).

 

Таблица 17.1 – Твердость полумартенситной структуры (50% мартенсита и 50% троостита) в углеродистых и легированных сталях

 

Содержание углерода, % Твердость, HRC пм Содержание углерода, % Твердость, HRC пм
Углеродис-тые Легирован- ные Углеродис-тые Легирован- ные
0, 08-0, 17 0, 18-0, 22 0, 23-0, 27 0, 28-0, 32 -   0, 33-0, 42 0, 43-0, 52 0, 53-0, 62    

 

Для определения прокаливаемости сталей приме­няют стандартный метод торцевой закалки. Метод заключается в том, что специальный цилиндрический образец нагревают до темпе­ратуры закалки, выдерживают при этой температуре 30-50 мин, а затем в специальной установке закаливают с торца струей воды (рис. 17.2).

 

  Рисунок 17.2 – Установка для торцевой закалки образцов: 1- образец; 2-штатив; 3- сопло; 4- сливная коробка

 

Установка должна быть помещена недалеко от печи, чтобы можно бы­ло быстро перенести об­разец из печи в установ­ку. Перед испытанием по холодному образцу регу­лируют точность попада­ния струи воды в торец. Образец выдерживают над струей воды до пол­ного охлаждения (не ме­нее 10 мин). После охлаждения образца по его двум диаметрально противоположным образующим сошлифовывают две лыски на глубину 0, 5 мм. По длине этих лысок измеряют твердость стали на приборе Роквелла по шкале НRС через 1, 5-3 мм.

Заканчивают измерение твердости, когда на определенном расстоянии от торца определяемая твердость не меняется. Аналогичные замеры твердости производят на второй плоскости. Значения твердости заносят в протокол. Вычислив среднее арифметическое твердости каждой пары точек, находящихся на одинаковом расстоянии от торца, строят кривую прокаливаемости в координатах «Твердость (HRC) - расстоя­ние от торца (L, мм)».

Затем по таблице 17.1. определяют твердость полумартенситной структуры данной стали. На графике параллельно оси абсцисс про­водят прямую, соответствующую твердости полумартенситной струк­туры, до пересечения с кривой и опускают перпендикуляр на ось абсцисс. Полученное значение L соответствует глубине прокаливаемости данной стали.

Чем больше это расстояние, тем выше прокаливаемость.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.