Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Какие реализации математических моделей знаете в виде программы для ЭВМ

Реализация математической модели на ЭВМ .Метод частотных характеристик оказывается наиболее удобным инструментом для реализации математической модели на ЭВМ как для отдельного теплообменника, так и для всего парогенератора.
Программная реализация математической модели на ЭВМ. Оптимизация вида тепловой системы и параметров ТЭС МК является типичной задачей прикладного нелинейного программирования.
Специальное математическое обеспечение состоит из пакетов прикладных программ и некоторых пакетов программ общематематического характера. Пакеты прикладных программ представляют собой наборы математических моделей отдельных узлов и программы расчета ее характеристик, а также программы, обеспечивающие численную реализацию математических моделей с учетом их особенностей. При этом в математическом обеспечении процесса проектирования эффективных алгоритмов численной реализации математических моделей на ЭВМ. В пакеты программ общематематического характера входят программы, отсутствующие в стандартном математическом обеспечении ЭВМ
Преобразования математических моделей в процессе получения рабочих программ анализа. Выше были определены классы функциональных ММ на различных иерархических уровнях как системы уравнений определенного типа. Реализация таких моделей на ЭВМ подразумевает выбор численного метода решения уравнений и преобразование уравнений в соответствии с особенностями выбранного метода. Конечная цель преобразований — получение рабочей программы анализа в виде последовательности элементарных действий (арифметических и логических операций), реализуемых командами ЭВМ.
Разработка алгоритмов статистической обработки результатов моделирования представляет собой вторую основную проблему реализации стохастической математической модели на ЭВМ.
Следует отметить, что с точки зрения реализации с помощью ЭВМ эвристические программы ничем не отличаются от обычных. Обычное программирование сводится к применению в задаче известных математических схем решений. Эвристическое программирование использует модели мыслительных процессов либо модели поведения человека. При реализации этих моделей на ЭВМ используют те же операторы машинного языка, что и при обычном программировании.

Численная реализация математической модели. Данный этап включает выбор метода решения системы уравнений, полученной на предыдущем этапе программирование, т. е. реализацию алгоритма в виде программы ЭВМ (причем следует отметить, что один и тот же вычислительный алгоритм может иметь различные программные реализации) пробные расчеты на ЭВМ анализ и интерпретацию полученных результатов, на основе которых делается вывод о пригодности или непригодности использованной математической модели и в случае необходимости принимается решение о ее корректировке.



58. Как производится проверка адекватности модели?

Под адекватностью математической модели будет пониматься степень соответствия результатов, полученных по разработанной модели, данным эксперимента или тестовой задачи. Прежде чем переходить к проверке адекватности модели, необходимо убедиться в правильном комплексном функционировании всех алгоритмов и программ модели, выполнить независимое тестирование и отладку всех отдельных алгоритмов (например, используемых программных модулей, реализующих используемый численный метод).

Проверка адекватности модели преследует две цели:

1) убедиться в справедливости совокупности гипотез, сформулированных на этапах концептуальной и математической постановок. Переходить к проверке гипотез следует лишь после проверки использованных методов решения, комплексной отладки и устранения всех ошибок и конфликтов, связанных с программным обеспечением;

2) установить, что точность полученных результатов соответствует точности, оговоренной в техническом задании. Проверка разработанной математической модели выполняется путем сравнения с имеющимися экспериментальными данными о реальном объекте или с результатами других, созданных ранее и хорошо себя зарекомендовавших моделей. В первом случае говорят о проверке путем сравнения с экспериментом, во втором — о сравнении с результатами решения тестовой задачи. Решение вопроса о точности моделирования зависит от требований, предъявляемых к модели, и ее назначения. При этом должна учитываться точность получения экспериментальных результатов или особенности постановок тестовых задач. В моделях, предназначенных для выполнения оценочных и прикидочных расчетов, удовлетворительной считается точность 10-15%. В моделях, используемых в управляющих и контролирующих системах, требуемая точность может быть 1—2% и даже более. Как правило, различают качественное и количественное совпадение результатов сравнения. При качественном сравнении требуется лишь совпадение некоторых характерных особенностей в распределении исследуемых параметров (например, наличие экстремальных точек, положительное или отрицательное значение параметра, его возрастание или убывание и т.д.). Фактически при качественном сравнении оценивается совпадение лишь вида функции распределения параметров. Вопрос о количественном сравнении можно ставить лишь после удовлетворительного ответа на вопрос о качественном соответствии результатов. При количественном сравнении большое значение следует придавать точности исходных данных для моделирования и соответствующих им значений сравниваемых параметров. Неадекватность результатов моделирования возможна, по крайней мере, по трем причинам:



а) значения задаваемых параметров модели не соответствуют допустимой области этих параметров, определяемой принятой системой гипотез. Например, в задаче о баскетболисте гипотезу об отсутствии сопротивления воздуха можно использовать лишь при относительно малых (менее 5 м/с) скоростях движения тела. При больших значениях начальной скорости мяча влияние силы сопротивления будет существенным;

б) принятая система гипотез верна, но константы и параметры в использованных определяющих соотношениях установлены не точно. Например, в случае задачи о баскетболисте значение ускорения свободного падения g может быть уточнено в зависимости от широты местности, где находится баскетболист;

в) неверна исходная совокупность гипотез. Все три случая требуют дополнительного исследования как моделируемого объекта (с целью накопления новой дополнительной информации о его поведении), так и исследования самой модели (с целью уточнения границ ее применимости). При возникновении проблем, связанных с адекватностью модели, ее корректировку требуется начинать с последовательного анализа всех возможных причин, приведших к расхождению результатов моделирования и результатов эксперимента. В первую очередь требуется исследовать модель и оценить степень ее адекватности при различных значениях варьируемых параметров (начальных и граничных условиях, параметров, характеризующих свойства объектов моделирования). Если модель неадекватна в интересующей исследователя области параметров, то можно попытаться уточнить значения констант и исходных параметров модели. Если же и в этом случае нет положительных результатов, то единственной возможностью улучшения модели остается изменение принятой системы гипотез. Данное решение фактически означает возвращение ко второму этапу процесса разработки модели и может повлечь не только серьезное изменение математической постановки задачи, но и методов ее решения (например, переход от аналитических к численным), полной переработки программного обеспечения и нового цикла проверки модели на адекватность. Поэтому решение об изменении принятой системы гипотез должно быть всесторонне взвешено и приниматься только в том случае, если исчерпаны все прочие возможности по улучшению адекватности модели.

 


mylektsii.ru - Мои Лекции - 2015-2019 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал