Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Геометрический смысл






геометрический смысл определенного интеграла: площадь криволинейной трапеции, ограниченной сверху кривой , снизу отрезком оси Ох, слева и справа прямыми х = а, х = b соответственно, численно равна определенному интегралу от функции f(х), взятому по отрезку .

Теорема об оценке определенного интеграла

Если m и Mсоответственно наименьшее и наибольшее значения непрерывной функции f(x) на отрезке [ a, b ], то

 

Билет 7.Формула Ньютона-Лейбница.

Пусть функция y = f(x) непрерывна на отрезке [a; b] и F(x) - одна из первообразных функции на этом отрезке, тогда справедлива формула Ньютона-Лейбница: .

Формулу Ньютона-Лейбница называют основной формулой интегрального исчисления.

Для доказательства формулы Ньютона-Лейбница нам потребуется понятие интеграла с переменным верхним пределом. Если функция y = f(x) непрерывна на отрезке [a; b], то для аргумента интеграл вида является функцией верхнего предела. Обозначим эту функцию , причем эта функция непрерывная и справедливо равенство .

Действительно, запишем приращение функции , соответствующее приращению аргумента и воспользуемся пятым свойством определенного интеграла и следствием из десятого свойства:
где .

Перепишем это равенство в виде . Если вспомнить определение производной функции и перейти к пределу при , то получим . То есть, - это одна из первообразных функции y = f(x) на отрезке [a; b]. Таким образом, множество всех первообразных F(x) можно записать как , где С – произвольная постоянная.

Вычислим F(a), используя первое свойство определенного интеграла: , следовательно, . Воспользуемся этим результатом при вычислении F(b): , то есть . Это равенство дает доказываемую формулу Ньютона-Лейбница .

Приращение функции принято обозначать как . Пользуясь этим обозначением, формула Ньютона-Лейбница примет вид .

Для применения формулы Ньютона-Лейбница нам достаточно знать одну из первообразных y=F(x) подынтегральной функции y=f(x) на отрезке [a; b] и вычислить приращение этой первообразной на этом отрезке.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.