Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Концентрация— величина, характеризующая количественный состав раствора.

Молярная концентрация эквивалента вещества. Приведите определение, обозначение и единицы измерения величины. составьте формулу для расчета молярной концентрации эквивалента вещества и приведите пример расчета для случая растворения 4, 9г. серной кислоты в 500 см.куб раствора. какой раствор называют нормальным? Рассчитайте молярную массу эквивалента серной кислоты для двух реакций нейтрализации ее щелочью.

H2SO4+NAOH-> NAHSO4+ H20

H2SO4+NAOH-> NASO4+H2O

Концентрация— величина, характеризующая количественный состав раствора.

Молярная концентрация -число молей растворенного вещ-ва, которое содержится в рас-ре. (обозначается: С(с индексом m)) выражается: моль/л.

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре раствора. Нормальную концентрацию выражают в моль/л (имеется в виду моль эквивалентов). Обозначается «N». Выражается: моль/м(в кубе)

где: ν — количество растворённого вещества, моль; V — общий объём раствора, л; z — фактор эквивалентности.

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H2SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата KHSO4, и двухнормальным в реакции с образованием K2SO4.

 

15) Современная модель атома является развитием планетарной модели. Согласно этой модели, ядро атома состоит из положительно заряженных протонов и не имеющих заряда нейтронов и окружено отрицательно заряженными электронами. Однако представления квантовой механики не позволяют считать, что электроны движутся вокруг ядра по сколько-нибудь определённым траекториям (неопределённость координаты электрона в атоме может быть сравнима с размерами самого атома).Химические свойства атомов определяются конфигурацией электронной оболочки и описываются квантовой механикой. Положение атома в таблице Менделеева определяется электрическим зарядом его ядра (то есть количеством протонов), в то время как количество нейтронов принципиально не влияет на химические свойства; при этом нейтронов в ядре, как правило, больше, чем протонов (см.: атомное ядро). Если атом находится в нейтральном состоянии, то количество электронов в нём равно количеству протонов. Основная масса атома сосредоточена в ядре, а массовая доля электронов в общей массе атома незначительна (несколько сотых процента массы ядра).Массу атома принято измерять в атомных единицах массы, равных 112 от массы атома стабильного изотопа углерода 12C. Законы движения частиц в квантовой механике выражаются уравнением Шредингера, которое играет в ней ту же роль, что и законы Ньютона в классической механике. Уравнение Шредингера представляет собой дифференциальное уравнение в частных производных. Э. Шредингер в 1926 г. предложил использовать волновое уравнение в качестве модели для описания поведения электрона в атоме – уравнение, связывающее энергию системы с ее волновым движением. Стационарное уравнение Шредингера для одной частицы можно записать в следующей форме:
- h2__ (d 2y + d 2y + d 2y) + Uy = Ey
8p2m (dx2 dy2 dz2)
где U – потенциальная энергия частицы; E – ее полная энергия; x, y, z – декартовы координаты; переменная величина y называется волновой функцией.

Дать характеристику энергетических состояний электронов в атоме квантовыми числами. Физическая, энергетическая, геометрическая характеристика главного, побочного, магнитного и спинного квантовых чисел.

Атомы характеризуются определенным значением заряда ядра и равным ему числом электронов, которые распределяются по энергетическим уровням. Поведение электронов в атоме можно охарактеризовать четырьмя квантовыми числами. Главное квантовое число n - определяет энергию электрона и размеры электронных облаков. Энергия зависит от расстояния между электроном и ядром: чем ближе к ядру электрон, тем меньше его энергия. Т.е. главное квантовое число определяет расположение электрона на том или ином энергетическом уровне (квантовом слое). Установлено, что n совпадает с номером периода, принимает численные значения 1, 2, 3, 4, 5, 6, 7…∞. и имеет, соответственно, буквенные обозначения К L M N O P Q. Орбитальное квантовое число l (называемое также побочным или азимутальным) - определяет форму электронного облака и расщепление энергетического уровня на подуровни, зависит от n. Принимает целочисленные значения от 0 до (n - 1) и обозначается строчными буквами l = 0 (s), 1(p), 2 (d), 3 (f).

Пусть n = 1, l = 0. Таким значением l характеризуются электронные облака, имеющие сферическую симметрию. Такие электроны называются s – электронами. Пусть n = 2, l = 0, 1. Электроны, у которых l = 1, называются p-электронами. Электроны 2-го энергетического уровня образуют два подуровня: 2s и 2p. Если n = 3, l = 0, 1, 2. Орбитальному квантовому числу l = 2 соответствует более сложная форма электронных облаков. Электроны, орбитальное квантовое число которых равно 2, называются d-электронами. Третий энергетический уровень содержит три подуровня: 3s, 3p, 3d. Если n = 4, l = 0, 1, 2, 3.Орбитальному квантовому числу l = 3 соответствует еще более сложная форма электронных облаков, а электроны с l = 3, называются f - электронами. Четвертый энергетический уровень содержит четыре подуровня: 4s, 4p, 4d, 4f.

Магнитное кв. число m – определяет пространственную ориентацию орбитали. Магнитное квантовое число принимает целочисленные значения 0, 1, 2,..., ± l. l = 0(s), ml = 0 соответствует одной атомной орбитали на s-подуровне; l = 1(p), ml = ±1, 0 – три возможных ориентации соответствуют трем атомным орбиталям на p – подуровне; l = 2(d), ml = ±2, ±1, 0 (5) – пять атомных орбиталей на d- подуровне; l = 3, ml = ±3, ±2, ±1, 0 –семь атомных орбиталей на f –подуровне.

n, m, l – определяют конкретную атомную орбиталь, на которой находится электрон.

Спиновое квантовое число ms. Спиновое квантовое число ms характеризует собственное вращение электрона вокруг своей оси и может принимать два значения - +1/2 и -1/2.

Энергия, необходимая для удаления одного моля электронов от одного моля атомов какого либо элемента, называется первой энергией ионизации (потенциалом ионизации). В результате ионизации атомы превращаются в положительно заряженные ионы. Энергию ионизации выражают в кДж/моль, либо в эВ. Эта энергия характеризует восстановительную способность элемента. Она возрастает в периоде слева направо и в группе снизу вверх, что обусловлено увеличением размеров атомов и расстояния внешних подуровней от ядра. Наименьшие значения энергии ионизации имеют щелочные элементы, находящиеся в начале периода, наибольшими значениями энергии ионизации характеризуются благородные газы, находящиеся в конце периода.

Сродство к электрону: энергетический эффект присоединения моля электронов к молю нейтральных атомов. Единицы измерения кДж/моль или эВ. Наибольшие значения сродства к электрону имеют галогены фтор, кислород, сера. В периоде слева направо она увеличивается, а в группе снизу вверх растет.

Электроотрицательность: характеристика способности атомов притягивать к себе электроны (ЭО). Она зависит от типа соединений, валентного состояния элемента. Существует несколько шкал электроотрицательности. Согласно Р.Малликену, ЭО равна полусумме энергии ионизации и энергии сродства к электрону. Наименьшие значения ЭО имеют s-элементы 1 группы, наибольшие значения – p-элементы 7 и 6 групп.

17) Как происходит формирование электронных структур многоэлектронный атомов. Сформулируйте принцип ПАули, правило Клочковского о наименьшей энергии, правила Гунда. Дайте пояснение на конкретных примерах.

Как происходит формирование электронных структур многоэлектронный атомов. Число электронов, которые могут находиться на одном энергетическом уровне, определяется формулой 2n2, где n – номер уровня. Максимальное заполнение первых четырех энергетических уровней: для первого уровня – 2 электрона, для второго – 8, для третьего – 18, для четвертого – 32 электрона. Максимально возможное заполнение электронами более высоких энергетических уровней, в атомах известных элементов не достигнуто. Квантово-механические расчеты показывают, что в многоэлектронных энергия электронов одного уровня неодинакова; электроны заполняют атомные орбитали разных видов и имеют разную энергию. Каждый энергетический уровень, кроме первого, расщепляется на такое число энергетических подуровней, сколько видов орбиталей включает этот уровень. Второй энергетический уровень расщепляется на два подуровня (2s – и 2p-подуровни), третий энергетический уровень – на три подуровня (3s-, 3p- и 3d-подуровни). Каждый s-подуровень содержит одну s орбиталь, каждый р-подуровень – три р-орбитали, каждый d-подуровень семь f-орбиталей. Закономерность заполнения электронных оболочек атомов определяется принципом запрета, установленным в 1925 г швейцарским физиком Паули (принцип Паули): В атоме не могут одновременно находиться два электрона с одинаковым набором четырех квантовых квантовых чисел. Используя понятия квантовые числа можно сказать, что: Каждый электрон в атоме однозначно характеризуется своим набором четырех квантовых чисел - главного n, орбитальногоl, магнитного ml, и спинового ms. Заселение электронами энергетических уровней, подуровней и атомных орбиталей подчиняется следующему правилу: В невозбужденном атоме все электроны обладают наименьшей энергией (принцип наименьшей энергии). Это означает, что каждый из электронов, заполняющих оболочку атома, занимает такую орбиталь, чтобы атом в целом имел минимальную энергию. Последовательно квантовое возрастание энергии подуровней происходит в следующем порядке: 1s - 2s -2р - 3s – 3р - 4s –3d - 4р - 5s -….Такой порядок увеличения энергии подуровней определяет расположение эле Ментов в Периодической системе. Правило Клечковского: Заполнение орбиталей происходит в порядке увеличения суммы квантовых чисел n+l; при постоянной сумме n+l заполнение происходит в порядке возрастания n. Применение правила Клечковского дает последовательность возрастания энергии орбиталей. Правило Гунда: суммарное спиновое число электронов данного подуровня должно быть максимальным. Т.е. заполнение орбиталей подуровня начинается одиночными электронами с одинаковыми спинами. После того как одиночные электроны займут все орбитали в подуровне, заполняются орбитали вторыми электронами с противоположными спинами. Принцип наименьшей энергии: устойчивому состоянию электрона в атоме соответствует наименьшее значение его энергии. Т.е. электроны заполняют орбитали в порядке повышения уровня энергии.

 

<== предыдущая лекция | следующая лекция ==>
Гран-При конкурса. | Далее четыре подсказки самому главбуху.




© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.