Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Лекция № 15






Основные функции уровней модели OSI

Каждый из семи уровней определяет перечень услуг, которые он предоставляет смежным уровням, реализуя определенный набор сетевых функций.

1. Физический уровень

· обеспечивает физический путь для передачи кодированных сигналов;

· устанавливает характеристики этих сигналов (амплитуда, частота, длительность и т.д.);

· определяет способ соединения СА с кабелем, тип разъемов, способ передачи;

· обеспечивает поддержку потока битов, содержание которых на этом уровне не имеет значения;

· отвечает за кодирование данных и синхронизацию битов.

2. Канальный уровень

· определяет правила совместного использования физического уровня узлами сети;

· передает информацию адресованными порциями – кадрами;

· определяет формат кадра и способ, согласно которому узел сети решает, когда можно передать или принять кадр. Используется два основных типа кадров (рис. 6.3).

Кадры данных содержат сообщения верхних уровней (пакеты). Другие кадры, такие как маркеры или подтверждения приема, используют методы обнаружения и коррекции ошибок. С точки зрения верхних уровней, канальный и физический обеспечивают безошибочную передачу пакетов данных.

Пример. В состав любого пакета входит информация для контроля правильности передачи. Так в трейлер пакета Интернет записывается контрольная сумма (КС) пакета. Она получается путем разбиения пакета на сегменты по 16 бит, которые представляются целыми числами, складываются и записываются в трейлер.

При приеме вычисляется новая КС и сравнивается с принятой. Если они равны, то посылается подтверждение и выдается новый пакет. Если не равны, то посылается сообщение «несовпадение» и передача пакета повторяется.

Если пакет не дошел или не дошел сигнал подтверждения, передающая станция, не получив пакет в течение некоторого времени, посылает пакет еще раз (реализую, так называемый, режим " time-out") (рис. 6.4).

Рис. 6.4. Пример передачи пакетов данных

Это только иллюстрация подхода к обмену пакетами данных в ЛВС. Существуют более мощные методы защиты от ошибок (циклические коды, коды Хэминга и т.д.), а также алгоритмы переспроса и повторения пакетов.

3. Сетевой уровень

Отвечает за буферизацию и маршрутизация в сети. Маршрутизация – существенная функция при работе в глобальных сетях (с коммутацией пакетов), когда необходимо определить маршрут передачи пакета, выполнить перевод логических адресов узлов сети в физические.

Рис. 6.5. Буферизация в сети

В ЛВС между любой парой узлов есть прямой путь (маршрут), поэтому основная функция этого уровня сводится к буферизации пакетов (рис. 6.5).

4. Транспортный уровень

· с передающей стороны переупаковывает информационные сообщения: длинные разбиваются на несколько пакетов, короткие объединяются в один;

· с принимающей стороны собирает сообщения из пакетов.

Так как сетевой уровень обеспечивает буферизацию, то несколько узлов могли передать свои сообщения в один и тот же узел сети. Моменты прибытия пакетов могут чередоваться. Задача этого уровня – правильная сборка пакетов каждого сообщения без смещения и потерь (рис. 6.6).

Рис. 6.6. Сборка пакетов

Транспортный уровень является границей, выше которой в качестве единицы информации рассматривается только сообщение, ниже – управляемый сетью пакет данных.

5. Сеансовый уровень

Позволяет двум приложениям на разных рабочих станциях устанавливать, использовать и завершать соединение, называемое сеансом. Сеанс создается по запросу процесса пользователя. В запросе определены: назначение сеанса связи (адрес); партнер, например, соответствующий прикладной процесс в другом узле.

Сеанс может начаться только в том случае, если прикладной процесс партнера активен и согласен связаться. На этом уровне выполняются такие функции, как распознавание имен и защита, необходимые для связи двух приложений в сети. Любой пользователь, введя имя и пароль и вошедший в сеть, создает сеанс.

6. Уровень представления

Его функция заключается в преобразовании сообщений, используемых прикладным уровнем, в некоторый общепринятый формат обмена данными между сетевыми компьютерами.

Целью преобразования сообщения является сжатие данных и их защита. В интерфейсе выше этого уровня поле данных сообщения имеет явную смысловую форму; ниже этого уровня поле данных сообщений и пакетов рассматривается как передаточный груз и их смысловое значение не влияет на обработку (рис. 6.7).

Рис. 6.7. Сообщение на уровне представления

На этом уровне работает утилита ОС, называемая редиректор. Ее назначение – переадресовать операции ввода/вывода к ресурсам сервера.

7. Прикладной уровень

Представляет собой окно для доступа прикладных процессов к сетевым услугам. Он обеспечивает услуги, напрямую поддерживающие приложение пользователей, такие как программное обеспечение для передачи файлов, доступа к БД и электронной почтой. Прикладной уровень управляет:

· общим доступом к сети;

· потоком данных;

· обработкой ошибок.

Основная идея модели OSI заключается в том, что каждому уровню отводится конкретная роль. Благодаря этому общая задача передачи данных расчленяется на ряд отдельных легкообозримых задач.


 

Лекция№ 16

Назначение протоколов

Операционная система управляет ресурсами компьютера, а сетевая операционная система обеспечивает управление аппаратными и программными ресурсами всей сети. Тем не менее, для передачи данных в сети нужен еще один компонент – протокол.

Протокол – это правила и технические процедуры, позволяющие нескольким компьютерам при объединении в сеть общаться друг с другом. Отметим три основных момента, касающихся протоколов:

1. Существует множество протоколов. И хотя все они участвуют в реализации связи, каждый протокол имеет:

· различные цели;

· выполняет определенные задачи;

· обладает своими преимуществами и ограничениями.

2. Функции протокола определяются уровнем, на котором он работает. Если, например, какой-то протокол работает на физическом уровне, то это означает, что он обеспечивает прохождение пакетов через плату СА и их поступление в сетевой кабель. В общем случае каждому уровню присущ свой набор правил (табл. 6.1).

Таблица 6.1

 

Уровень Набор правил (протокол)
Прикладной Инициация или прием запроса
Представительский Добавление в сообщение форматирующей, отображающей и шифрующей информации
Сеансовый Добавление информации о трафике – с указанием момента отправки пакета
Транспортный Добавление информации для обработки ошибок
Сетевой Добавление адресов и информации о месте пакета в последовательности передаваемых пакетов
Канальный Добавление информации для проверки ошибок (трейлера пакета) и подготовка данных для передачи по физическому соединению
Физический Передача пакета как потока битов в соответствии с определенным способом доступа

3. Несколько протоколов могут работать совместно каждый на своем уровне. Это так называемый стек или набор протоколов (например, стек TCP/IP, объединяющий транспортный и сетевой протоколы).

Работа протоколов

Протоколы реализуются через заголовки, которые добавляются к пакетам по мере того, как они передаются по уровням. Каждый заголовок связывается с конкретным уровнем и в каждом последующем уровне воспринимается как часть пакета (рис. 6.8).

Рис. 6.8. Формирование, передача и прием пакета

При поступлении пакета в принимающий узел, заголовки соответствующих уровней используются для вызова заданной функции в принимающем узле. При передаче пакета выше этот заголовок изымается. И компьютер-отправитель, и компьютер-получатель должны выполнять каждое действие одинаковым способом с тем, чтобы пришедшие по сети данные совпали с отправленными.

Если, например, два протокола будут по-разному разбивать данные на пакеты или по-разному добавлять данные (о последовательности пакетов, синхронизации и т. д.), то тогда компьютер, использующий один из протоколов, не сможет связаться с компьютером, на котором работает другой протокол.

На работу протоколов ряда уровней оказывает влияние, является ли сеть с коммутацией соединений или с коммутацией пакетов. Широкое развитие межсетевых объединений («интернет»), компонентами которых являются ЛВС, привело к тому, что данные из одной ЛВС в другую могут передаваться по одному из возможных маршрутов. Протоколы, которые поддерживают такую передачу, называются маршрутизируемыми протоколами. И их роль постоянно возрастает.

Основные типы протоколов

Существует несколько стандартных стеков протоколов, разработанных разными фирмами. Протоколы этих стеков выполняют работу, специальную для своего уровня. Однако коммуникационные задачи, которые возложены на сеть, приводят к разделению протоколов на три типа (рис. 6.9): прикладные протоколы; транспортные протоколы и сетевые протоколы.

Рис. 6.9. Уровни модели OSI и соответствующие им типы протоколов

Прикладные протоколы работают на верхнем уровне модели OSI и обеспечивают взаимодействие приложений и обмен данными между ними.

Транспортные протоколы поддерживают сеансы связи между компьютерами и гарантируют надежный обмен данными между ними.

Сетевые протоколы обеспечивают услуги связи. Эти протоколы управляют: адресацией, маршрутизацией, проверкой ошибок и запросами на повторную передачу.

Наиболее распространенные стеки протоколов

Наиболее популярными в настоящее время являются стеки протоколов: TCP/IP разработанный более 20 лет назад по заказу МО США; IPX/SPX фирмы Novell и NETBEUI / NetBIOS фирмы IBM.

1. Стек TCP/IP включает в себя два основных протокола:

· TCP (Transmission Control Protocol) – протокол для гарантированной доставки данных, разбитых на последовательность фрагментов. Соответствует транспортному уровню.

· IP (Internet Protocol) – протокол для передачи пакетов, относится к разряду сетевых протоколов.

Стек TCP/IP является промышленным стандартным набором протоколов, которые обеспечивают связь в неоднородной среде, т. е. обеспечивают совместимость между компьютерами разных типов. Кроме того, TCP/IP:

· представляет доступ к ресурсам Интернет;

· поддерживает маршрутизацию и обычно используется в качестве межсетевого протокола.

Благодаря своей популярности TCP/IP стал стандартом де-факто для межсетевого взаимодействия. К другим специально созданным для стека TCP/IP протоколам относятся: SMTP (Simple Mail Protocol) – электронная почта; FTP (File Transfer Protocol) – обмен файлами между ЭВМ и др. Эти протоколы относятся к разряду прикладных протоколов.

2. Стек IPX / SPX (Novell) включает:

· IPX (Internetwork Packet Exchange) – протокол межсетевой передачи пакетов, соответствует транспортному уровню и определяет формат передаваемых по сети кадров. На уровне IPX рабочие станции обмениваются блоками данных без подтверждения.

· SPX (Sequenced Packet Exchange) – протокол последовательного обмена пакетами. Соответствует сетевому уровню. Перед началом обмена РС устанавливают между собой связь. На уровне протокола SPX гарантирована доставка передаваемых по сети кадров. При необходимости выполняются повторные передачи.

Стек IPX / SPX поддерживает маршрутизацию и используется в сетях Novell.

3. Протокол NetBIOS (Network Basic Input/Output System) – базовая система ввода/вывода.

Предназначен для передачи данных между РС, выполняет функции сетевого, транспортного и сеансового уровней. Этот протокол предоставляет программам средства осуществления связи с другими сетевыми программами.

NetBEIU – расширенный интерфейс NetBIOS – небольшой быстрый и эффективный протокол транспортного уровня, который поставляется со всеми сетевыми продуктами Microsoft. Основной недостаток – он не поддерживает маршрутизацию. NWLink – реализация IPX / SPX фирмой Microsoft. Это транспортный маршрутизируемый протокол.


 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.