Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Моделирование динамических систем






Направлено на исследова­ние сложных объектов, поведение которых описывается системами алгебро-дифференциальных уравнений. Инженерным подходом к моделированию таких объектов 40 лет назад была сборка блок-схем из решающих блоков аналоговых компьютеров: интеграторов, усилителей и сумматоров, токи и напряжения в которых представляли переменные и параметры моделируе­мой системы. Этот подход и сейчас является основным в моделировании динамических систем, только решающие блоки являются не аппаратными, а программными. Он реализован, например, в инструментальной среде Simulink.

Дискретно-событийное моделирование

В немрассматриваются системы с дискретными со­бытиями. Для создания имитационной модели такой системы моделируемая система приводится к потоку заявок, которые обрабатываются активными приборами. Например, для моделирования процесса обслуживания физических лиц в банке физические лица представляются в виде потока заявок, а работники банка, обслуживающие их представляются активными приборами. Идеология дискретно-событийного моделирования была сформулирована более 40 лет назад и реализована в среде моделирования GPSS, которая с некоторыми модификациями до сих пор используется для обучения имитационному моделированию.

Системная динамика.

Системная динамика – это направление в изучении сложных систем, исследующее их поведение во времени и в зависимости от структуры элементов системы и взаимодействия между ними. В том числе: причинно-следственных связей, петель обратных связей, задержек реакции, влияния среды и других. Основоположником системной динамики является американский ученый Джей Форрестер. Дж. Форрестер применил принципы обратной связи, существующей в системах автоматического регулирования, для демонстрации того, что динамика функционирования сложных систем, в первую очередь производственных и социальных, существенно зависит от структуры связей и временных задержек в принятии решений и действиях, которые имеются в системе. В 1958 году он предложил использовать для компьютерного моделирования сложных систем потоковые диаграммы, отра­жающих причинно-следственные связи в сложной системе,

В настоящее время системная динамика превратилась в зрелую науку. Общество системной динамики (The- System Dynamics Society, www.systemdynamics.org) является официальным форумом системных анали­тиков во всем мире. Ежеквартально выходит журнал System Dynamics Review, ежегодно созываются несколько международных конференций по этим проблемам. Системная динамика как методология и инструмент ис­следования сложных экономических и социальных процессов изучается во многих бизнес-школах по всему миру..

Агентное моделирование

Агентное моделирование (agent-based model (ABM)) — метод имитационного моделирования, исследующий поведение децентрализованных агентов и то, как такое поведение определяет поведение всей системы в целом. В отличие от системной динамики аналитик определяет поведение агентов на индивидуальном уровне, а глобальное поведение возникает как результат деятельности множества агентов (моделирование «снизу вверх»).

Агентное моделирование включает в себя элементы теории игр, сложных систем, мультиагентных систем и эволюционного программирования, методы Монте-Карло, использует случайные числа.

Существует множество определений понятия агента. Общим во всех этих определениях является то, что агент — это некоторая сущность, которая обладает активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, может взаимодействовать с окружением и другими агентами, а также может изменяться (эволюциони­ровать). Многоагентные (или просто агентные) модели используются для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами, а наоборот, эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей — получить представле­ние об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных ак­тивных объектов и взаимодействии этих объектов в системе.

При создании агентной модели логика поведения агентов и их взаимодейст­вие не всегда могут быть выражены чисто графическими средствами, здесь часто приходится использовать программный код. Для агентного моделирования используются пакеты Swarm и RePast. Примером агентной модели является модель развития города.

В современном мире информационных технологий десятилетие сравнимо с веком прогресса в традиционных технологиях, Но в имитационном моделировании почти без изменения применяются идеи и решения 60-х годов прошлого века. На базе этих идей еще в прошлом веке были разработаны программные средства, которые с незначительными изменениями применяются до сих пор. Разработка имитационных модели с использованием этих программ является весьма сложной и трудоемкой задачей, доступной только высококвалифицированным специалистам и требующей больших временных затрат. Один из разработчиков имитационных моделей Роберт. Шеннон писал: «разработка даже простых моделей требует 5—6 человеко-месяцев и стоит по­рядка 30 ООО долларов, а сложных — на два порядка больше». Иными слова­ми, трудоемкость построения сложной имитационной модели традицион­ными методами оценивается в сотню человеко-лет.

Имитационное моделирование традицион­ными методами реально используется уз­ким кругом профессионалов, которые должны иметь не только глубокие знания в той прикладной области, для которой строится модель, но также глубокие знания в программировании, теории вероятностей и статистике.

Кроме того, проблемы анализа современных реальных систем часто требуют разработки моделей, не укладывающихся в рамки одной единственной парадигмы моделирова­ния. Например, при моделировании системы с преобладающим дискретным типом событий может потребоваться введение переменных, описывающих непрерывные характеристики среды. В парадигму блочной модели потоков данных совершенно не вписываются дискретно-событийные системы, В системно-динамической модели часто возникает не­обходимость учета дискретных событий или моделирования индивидуаль­ных свойств объектов из разнородных групп. Поэтому использование указанных выше программных средств не отвечает современным требованиям,.

 

AnyLogic — инструмент имитационного моделирования нового поколения

AnyLogic - программное обеспечение для имитационного моделирования нового поколения, разработано российской компанией The AnyLogic Company (бывшая «Экс Джей Текнолоджис», - англ. XJ Technologies). Этот инструмент существенно упрощает разработку моделей и их анализ.

Пакет AnyLogic создан с использованием последних достижений информационных технологий: объектно-ориентированный подход, элементы стандарта UML, языка программирования Java, и т.д. Первая версия пакета (Anylogic 4.0) была выпущена в 2000г. К настоящему времени выпущена версия Anylogic 6.9.

Пакет поддерживает все известные методы имитационного моделирования:

· Моделирование динамических систем

· системная динамика;

· дискретно-событийное моделирование;

· агентное моделирование.

Рост произво­дительности компьютеров и достижения в информационных технологиях, использованные в AnyLogic, сделали возможным реализацию агентных мо­делей, содержащих десятки и даже сотни тысяч активных агентов

С помощью AnyLogic стало возможным разрабатывать модели в следующих областях:

· производство;

· логистика и цепочки поставок;

· рынок и конкуренция;

· бизнес-процессы и сфера обслуживания;

· здравоохранение и фармацевтика;

· управление активами и проектами;

· телекоммуникации и информационные системы;

· социальные и экологические системы;

· пешеходная динамика;

· оборона.

 

 

Модели. Наука и искусство моделирования

 

Моделирование состоит из трех этапов:

1. анализ реального явления и построе­ние его упрошенной модели,

2. анализ построенной модели формальными средствами (например, с помощью компьютера),

3. интерпретация результатов, полученных на модели, в терминах реального явления.

Первый и третий этапы не могут быть формализованы, их выполнение требует интуиции, творческого вооб­ражения и понимания сути изучаемого явления, т. е. качеств, присущих ра­ботникам искусства.

 

1.1. Модели процессов и систем

Современная концепция научного исследования состоит в том, что реальные объекты заменяются их упрощенными представлениями, абстракциями, вы­бираемыми таким образом, чтобы в них была отражена суть явления, те свойства исходных объектов, которые существенны для решения поставлен­ной проблемы. Построенный в результате упрощения объект называется мо­делью.

Модель — это упрошенный аналог реального объекта или явления, представляющий законы поведения входящих в объект частей и их связи. Построение модели и ее анализ называется моделированием. В научной рабо­те моделирование является одним из главных элементов научного познания.

В практической деятельности цель построения модели — решение некото­рой проблемы реального мира, которую дорого либо невозможно решать, экспериментируя с реальным объектом.

Обычно исходная проблема состоит в анализе существующего или предпо­лагаемого объекта для принятия решения по его управлению. Например, таким объектом может быть географически распределенная система постав­щиков сырья, заводов, складов готовой продукции и их транспортные связи. Другой пример — порт для разгрузки танкеров с несколькими терминалами, емкостями для загрузки нефти, пулом нефтеналивных цистерн для вывоза нефти.

При построении модели как заменителя реальной системы выделяются те аспекты, которые существенны для решения проблемы, и игнорируются те аспекты, которые усложняют проблему, делают анализ очень сложным или вообще невозможным. Проблема анализа всегда ставится в мире реальных объектов. В примере с портом это может быть проблема оптимального ис­пользования существующих ресурсов (организация движения танкеров в аква­тории порта и использования железнодорожных нефтеналивных цистерн) для организации перекачки нефти из танкеров и ее отправки потребителям.

Принимать решения по управлению ресурсами, перестраивая реальную сис­тему, экономически нецелесообразно. Другой путь решения — сформулиро­вать эту проблему для модели, которую составят схема порта, объемы неф­теналивных емкостей, скорости разгрузки, средняя интенсивность прибытия танкеров, среднее время оборачиваемости цистерн и т. п..

Реальные объекты и ситуации обычно сложны, и модели нужны для того, чтобы ограничить эту сложность, дать возможность понять ситуацию, по­нять тенденции изменения ситуации (спрогнозировать будущее поведение анализируемой системы), принять решение по изменению будущего поведе­ния системы и проверить его. Если модель отражает свойства системы, су­щественные для решения конкретной проблемы, то анализ модели позволя­ет вывести характеристики, которые объяснят известные и предскажут новые свойства исследуемой реальной системы без экспериментов с самой системой. С помощью моделирования получено множество впечатляющих результатов в науке, технике и на производстве.

 

1.2. Моделирование для поддержки принятия управленческих решений

Принятие разумных решений по рациональной организации и управлению современными системами становится невозможным на основе обычного здравого смысла или интуиции из-за возрастающей сложности систем. Еще в 1969 г. известный ученый, родоначальник системной динамики Джей Форрестер отмечал, что на основе интуиции для управления сложными сис­темами чаще выбираются неверные решения, чем верные, и это про­исходит потому, что в сложной системе причинно-следственные отношения ее параметров не являются простыми и ясными. В литературе имеется большое число примеров, показывающих, что люди неспособны предвидеть результат их воздействий в сложных системах. Примером может слу­жить каскадное развитие аварий в энергосистемах Северо-Запада США 16 августа 2003 г. и в Московском регионе 25 мая 2005 г., приведших к мил­лиардным потерям и затронувшим миллионы людей.

Повышение производительности и надежности, уменьшение стоимости и рисков, оценка чувствительности системы к изменениям параметров, опти­мизация структуры — все эти проблемы встают как при эксплуатации суще­ствующих, так и при проектировании новых технических и организацион­ных систем. Трудность понимания причинно-следственных зависимостей в сложной системе приводит к неэффективной организации систем, ошиб­кам в их проектировании, большим затратам на устранение ошибок. Сего­дня моделирование становится единственным практическим эффективным средством нахождения путей оптимального (либо приемлемого) решения проблем в сложных системах, средством поддержки принятия ответственных решений.

Моделирование особенно важно именно тогда, когда система состоит из многих параллельно функционирующих во времени и взаимодействующих подсистем. Такие системы наиболее часто встречаются в жизни. Каждый человек мыслит последовательно, даже очень умный человек в конкретный момент времени обычно может думать только об одном деле. Поэтому по­нимание одновременного развития во времени многих влияющих друг на друга процессов является для человека трудной задачей. Имитационная мо­дель помогает понять сложные системы, предсказать их поведение и разви­тие процессов в различных ситуациях и, наконец, дает возможность изме­нять параметры и даже структуру модели, чтобы направить эти процессы в желаемое русло. Модели позволяют оценить эффект планируемых измене­ний, выполнить сравнительный анализ качества возможных вариантов ре­шений. Такое моделирование может осуществляться в реальном времени, что позволяет использовать его результаты в различных технологиях (от опе­ративного управления до тренинга персонала).

1.3. Уровни абстракции и адекватность модели

Основной парадокс моделирования состоит в том, что изучается упрощен­ная модель системы, а полученные выводы применяются к исходной реаль­ной системе со всеми ее сложностями. Является ли такая подмена право­мерной?

При изучении естественных объектов исследователь абстрагируется от не­существенных, случайных деталей, которые не просто усложняют, но могут и затемнить само явление. Например, при анализе нефтеналивного порта удобно говорить о танкерах как о емкостях, из которых производится пере­качка определенного объема нефти с некоторой скоростью, а не как о ко­раблях с каютами, определенной численностью экипажа и т. п. Поскольку все абстракции неполны и неточны, можно говорить только о приближен­ном соответствии реальности тех результатов, которые получены исследова­нием моделей. Соответствие модели моделируемому объекту или явлению при решении конкретной проблемы называется адекватностью. Адекват­ность определяет возможность использования приближенных результатов, полученных на модели, для решения практической проблемы реального ми­ра. Часто адекватность модели определяется рядом условий и ограничений на сущности реального мира, и для того чтобы использовать результаты анализа, полученные на модели, необходимо тщательно проверять (или даже обеспечивать) эти ограничения и условия при функционировании реальной системы (например, чтобы сделать процессы в обществе управляемыми, создается вертикаль власти). Поскольку адекватность модели определяется только возможностью использования модели для решения конкретной про­блемы, адекватная модель не обязательно должна досконально отображать процессы, происходящие в моделируемой системе (или, что то же самое, модель не обязательно должна отображать " физически правильную" картину мира).

На рис. 1.3 представлена шкала уровней абстракции и примеры проблем моделирования в конкретных областях, приблизительно расставленные на этой шкале. На нижнем уровне абстракции решаются про­блемы, в которых важны отдельные физические объекты, их индивидуаль­ное поведение и физические связи, точные размеры, расстояния, времена. Примерами моделей, относящихся к этому уровню абстракции, являются модели движения пешеходов, модели движения механических систем и их систем управления. На среднем уровне обычно решаются проблемы массово­го производства и обслуживания, здесь представляются отдельные объекты, но их физическими размерами пренебрегают; значения скоростей и времен усредняются или используются их стохастические значения. Примерами мо­делей на этом уровне абстракции являются модели массового обслуживания, модели движения транспорта, модели управления ресурсами. Высокий уровень абстракции используется при разработке моделей сложных систем, в кото­рых исследователь абстрагируется от индивидуальных объектов и их поведе­ний, рассматривая только совокупности объектов и их интегральные, агре­гированные характеристики, тенденции изменения значений, влияние на динамику системы причинных обратных связей. Модели рынка и динамики народонаселения, экологические модели и классические модели распро­странения эпидемий построены на этом уровне абстракции.

 

Для каждой цели исследования даже одного и того же объекта реального мира должна быть построена своя модель, которая соответствует этой цели. Для решения конкретной задачи будет удобна модель, адекватно отражаю­щая структуру объекта и законы, по которым он функционирует на выбран­ном уровне абстракции. Например, очевидно, что планеты не материальные точки, но при такой абстракции в рамках ньютоновской теории тяготения можно достаточно точно предсказать характеристики движения планет. Однако эта модель требует уточнения для расчета траекторий спутников и ракет. Для решения проблемы оптимального использования транспорта необходимы подробные карты, расстояния и времена. То, что Земля на карте представляется пло­ской, не существенно для решения транспортных проблем.

Хотя существуют устоявшиеся подходы к выбору уровня абстракции и ра­зумные объяснения данного выбора для построения достаточно адекватных моделей при решении многих типов проблем, все же общей методики по­строения модели с требуемым уровнем адекватности не существует. В каче­стве рекомендации по выбору уровня абстракции можно сказать лишь сле­дующее. Нужно начать с наиболее простой модели, отражающей только са­мые существенные (с точки зрения исследователя) аспекты моделируемой системы. После обнаружения неадекватности модели, т. е. неприменимости ее к решению поставленной проблемы, отдельные подструктуры и процессы модели следует реализовать более детально, на более низком уровне абст­ракции. Можно быть уверенным, что разработка последовательности услож­няющихся все более подробных моделей может привести к обеспечению приемлемой адекватности при решении любой конкретной задачи.

о моделируе­мом объекте. Например, никакая модель не может представить все характери­стики планеты Земля. С другой стороны, очевидно также, что любая конкрет­ная задача не потребует для своего решения знания всех этих характеристик.

Конечно, можно построить модели, которые абстрагируются от существен­ных аспектов реальности. Такие модели будут неадекватными, а выводы, полученные на основе этих моделей, будут неверными.

 
 

 

 


Очевидно, что никакая модель никогда не дает полных знаний

1.4. Моделирование как наука и искусство

Моделирование как вид профессиональной деятельности связано с анали­зом реальных систем и процессов самой разной природы. Специалист по моделированию при разработке модели в конкретной области должен свя­зать словарь этой области с терминологией моделирования, выделить под­системы и их связи в реальной системе, определить параметры подсистем и их зависимости, выбрать подходящий уровень абстракции при построении модели каждой подсистемы. Он должен грамотно выбрать подходящий ма­тематический аппарат и корректно его использовать, уметь реализовать эле­менты модели, их связи и логические отношения подходящими средствами в среде моделирования, понимать ограничения при интерпретации результа­тов моделирования, владеть методами верификации и калибровки моделей. Все это делает моделирование серьезной научной деятельностью.

Но моделирование является также и искусством, причем в значительно большей мере, чем им является, например, программирование. Универсаль­ного общего способа построения адекватных моделей не существует. Хотя для многих физических явлений давно разработаны адекватные модели, дос­таточные для решения широкого класса задач анализа динамических систем (например, связь скорости, расстояния и времени при анализе свободного перемещения объектов в пространстве), однако для производственных, со­циальных, биологических систем, а также многих технических систем при конструировании модели нужно проявить изобретательность, знание мате­матики, понимание процессов в системе, сути абстрагирования и т. п. По-строение модели — созидательная креативная деятельность сродни искусст­ву, она требует интуиции, глубокого проникновения в природу явления и решаемой проблемы.

 

Виды моделей

Модели можно классифицировать по различным признакам: статические и динамические, непрерывные и дискретные, детерминированные и стохас­тические, аналитические и имитационные и т. д.

 

2.1. Статические и динамические модели

Статические модели оперируют характеристиками и объектами, не изме­няющимися во времени. В динамических моделях, которые обычно более сложны, изменение параметров во времени является существенным. Модель нефтеналивного порта является динамической: в ней модели­руется поведение во времени отдельных объектов системы: движение танке­ров в акватории порта, движение цистерн на причале, уровень нефти в на­копителях.

Статические модели обычно имеют дело с установившимися процессами, уравнениями балансового типа, с предельными стационарными характери­стиками. Моделирование динамических систем состоит в имитации правил перехода системы из одного состояния в другое с течением времени. Под состоянием системы понимается набор значений существенных парамет­ров и переменных системы. Изменение состояния системы во времени в динамиче­ских системах — это изменение значений переменных системы в соответст­вии с законами, определяющими связи переменных и их зависимости друг от друга во времени.

Пакет AnyLogic поддерживает разработку и анализ динамических моделей. Этот инструмент содержит средства для аналитического задания уравнений, описывающих изменение переменных во времени, дает возможность учета модельного времени и содержит средства его продвижения, здесь также имеется язык для выражения логики и описания прогресса систем под влиянием любого типа событий, в частности, исчерпания таймаута — задан­ного интервала времени.

 

 

2.2. Непрерывные, дискретные и гибридные модели

Реальные физические объекты функционируют в непрерывном времени, и для изучения многих проблем физических систем их модели должны быть непрерывными. Состояние таких моделей изменяется непрерывно во време­ни. Это модели движения в реальных координатах, модели химического производства и т. п. Процессы движения объектов и процессы перекачки нефти в модели нефтеналивного порта являются непрерывными.

На более высоком уровне абстракции для многих систем адекватными яв­ляются модели, в которых переходы системы из одного состояния в другое можно считать мгновенными, происходящими в дискретные моменты вре­мени. Такие системы называются дискретными. Примером мгновенного пе­рехода является изменение числа клиентов банка или количества покупате­лей в магазине. Очевидно, что дискретные системы — это абстракция, процессы в природе не происходят мгновенно. В реальный магазин реаль­ный покупатель входит в течение некоторого времени, он может застрять в дверях, колеблясь, войти или нет, и всегда существует непрерывная после­довательность его положения во время прохождения дверей магазина. Одна­ко при построении модели магазина для оценки, например, средней длины очереди в кассу при заданном потоке покупателей и известных характери­стиках обслуживания кассиром клиентов можно абстрагироваться от этих второстепенных явлений и считать систему дискретной: результаты анализа полученной дискретной модели обычно достаточно точны для принятия обоснованных управленческих решений для подобных систем. В модели неф­теналивного порта мгновенными можно считать, например, переходы свето­форов на входе в гавань из состояния " запрещено" в состояние " разрешено". На еще более высоком уровне абстракции при анализе систем также ис­пользуются непрерывные модели, что характерно для системной динамики. Потоки машин на автострадах, потребительский спрос, распространение инфекции среди населения часто удобно описывать с помощью взаимозави­симостей непрерывных переменных, описывающих количества, интенсивно­сти изменения этих количеств, степени влияния одних количеств на другие. Соотношения таких переменных выражаются обычно дифференциальными уравнениями.

Во многих случаях в реальных системах присутствуют оба типа процессов, и если оба они являются существенными для анализа системы, то и в модели одни процессы должны представляться как непрерывные, другие — как дискретные. Такие модели со смешанным типом процессов называются гиб­ридными. Например, если при анализе функционирования магазина сущест­венным является не только количество покупателей, но и пространственное их положение и перемещение покупателей, то модель в этом случае должна представлять смесь непрерывных и дискретных процессов, т. е. это гибрид­ная модель. Другим примером может служить модель функционирования крупного банка. Поток инвестиций, получение и выдача кредитов в нор­мальном режиме описывается набором дифференциальных и алгебраических уравнений, т. е. модель является непрерывной. Однако существуют ситуа­ции, например дефолт (дискретное событие), в результате чего возникает паника у населения, и с этого момента система описывается совершенно другой непрерывной моделью. Модель данного процесса на том уровне аб­стракции, на котором мы хотим адекватно описать оба режима работы банка и переход между режимами, должна включать как описание непрерывных процессов, так и дискретные события, а также их взаимозависимости.

Пакет AnyLogic поддерживает описание как непрерывных, так и дискрет­ных процессов, а также строить гибридные модели.. AnyLogic позволяет реализовать модель, фактически, на любом уровне абстракции (детальности). Выполнение гибридных моде­лей в AnyLogic основано на современных результатах теории гибридных динамических систем.

 

2.3. Детерминированные и стохастические модели

При моделировании сложных реальных систем исследователь часто сталкива­ется с ситуациями, в которых случайные воздействия играют существенную роль. Стохастические модели, в отличие от детерминированных, учитывают вероятностный характер параметров моделируемого объекта. Например, в модели нефтеналивного порта не могут быть определены точно моменты прихода в порт танкеров. Данные моменты являются случайными величи­нами, потому модель эта является стохастической: значения переменных величин модели, которые зависят от реализаций случайных величин, сами становятся случайными величинами. Анализ подобных моделей выполня­ется на компьютере на основе статистики, набираемой в ходе имитацион­ных экспериментов при многократном прогоне модели для различных значений исходных случайных величин, выбранных в соответствии с их статистическими характеристиками.

AnyLogic содержит средства для генерации случайных величин и статисти­ческой обработки результатов компьютерных экспериментов. AnyLogic включает генераторы случайных чисел для множества распределений. Разработчик модели может использовать также свой собственный генератор случайных величин, по­строенный в соответствии с данными наблюдений над реальной системой.

2.4. Аналитические и имитационные модели

Использование абстракций при решении проблем с помощью моделей часто состоит в применении того или иного математического аппарата. Простей­шими математическими моделями являются алгебраические соотношения, и анализ модели часто сводится к аналитическому решению этих уравне­ний. Некоторые динамические системы можно описать в замкнутой форме, например, в виде систем линейных дифференциальных и алгебраических уравнений и получить решение аналитически. Такое моделирование называ­ется аналитическим. При аналитическом моделировании процессы функ­ционирования исследуемой системы записываются в виде алгебраических, интегральных, дифференциальных уравнений и логических соотношений, и в некоторых случаях анализ этих соотношений можно выполнить с по­мощью аналитических преобразований. Современным средством поддержки аналитического моделирования являются электронные таблицы типа MS Excel.

Однако использование чисто аналитических методов при моделировании реальных систем сталкивается с серьезными трудностями: классические ма­тематические модели, допускающие аналитическое решение, в большинстве случаев к реальным задачам неприменимы. Например, в модели нефтена­ливного порта построить аналитическую формулу для оценки коэффициента использования оборудования невозможно хотя бы потому, что в системе существуют стохастические процессы, есть приоритеты обработки заявок на использование ресурсов, внутренний параллелизм в обрабатывающих под­системах, прерывания работы и т. п. Даже если аналитическую модель уда­ется построить, для реальных систем они часто являются существенно нелинейными, и чисто математические соотношения в них обычно допол­няются логико-семантическими операциями, а для них аналитического ре­шения не существует. Поэтому при анализе систем часто стоит выбор между моделью, которая является реалистическим аналогом реальной ситуации, но не разрешимой аналитически, и более простой, но неадекватной моделью, математический анализ которой возможен.

При имитационном моделировании структура моделируемой системы — ее подсистемы и связи — непосредственно представлена структурой модели, а процесс функционирования подсистем, выраженный в виде правил и урав­нений, связывающих переменные, имитируется на компьютере. AnyLogic — это среда имитационного моделирования. Разнообразные средства специфи­кации и анализа результатов, имеющиеся в AnyLogic, позволяют строить модели, имитирующие работу моделируемой системы фактически с любой желаемой степенью адекватности, и выполнять анализ модели на компьюте­ре без проведения аналитических преобразований.

 

Имитационное моделирование

3.1. Что такое имитационное моделирование

Имитационное моделирование — это разработка и выполнение на компьютере программной системы, отражающей структуру и функционирование (пове­дение) моделируемого объекта или явления во времени. Такую программ­ную систему называют имитационной моделью этого объекта или явления. Объекты и сущности имитационной модели представляют объекты и сущ­ности реального мира, а связи структурных единиц объекта моделирования отражаются в интерфейсных связях соответствующих объектов модели. Та­ким образом, имитационная модель — это упрощенное подобие реальной системы, либо существующей, либо той, которую предполагается создать в будущем. Имитационная модель обычно представляется компьютерной программой, выполнение программы можно считать имитацией поведения исходной системы во времени.

В русскоязычной литературе термин " моделирование" соответствует американ­скому " modeling" и имеет смысл создание модели и ее анализ, причем под терми­ном " модель" понимается объект любой природы, упрощенно представляющий исследуемую систему. Слова " имитационное моделирование" и " вычислительный (компьютерный) эксперимент" с оответствуют англоязычному термину " simulation". Эти термины подразумевают разработку модели именно как компьютерной программы и исполнение этой программы на компьютере.

Итак, имитационное моделирование — это деятельность по разработке про­граммных моделей реальных или гипотетических систем, выполнение этих программ на компьютере и анализ результатов компьютерных эксперимен­тов по исследованию поведения моделей. Имитационное моделирование имеет существенные преимущества перед аналитическим моделированием в тех случаях, когда:

· отношения между переменными в модели нелинейны, и поэтому анали­тические модели трудно или невозможно построить;

· модель содержит стохастические компоненты;

· для понимания поведения системы требуется визуализация динамики происходящих в ней процессов;

· модель содержит много параллельно функционирующих взаимодейст­вующих компонентов.

Во многих случаях имитационное моделирование — это единственный спо­соб получить представление о поведении сложной системы и провести ее анализ.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.