Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Силовое оборудование






В качестве основного силового оборудования строительных машин применяют электродвигатели переменного и постоянного тока с питанием от внешней силовой сети и двигатели внутреннего сгорания, не зависящие от внешних источников энергии. Электродвигатели приводят в действие переносные (ручные) передвижные и стационарные машины, длительное время работающие на одном месте (башенные, козловые и мостовые краны, смесительные установки, конвейеры, насосные установки, и т.п.). Электродвигатели преобразуют электрическую энергию в механическую. Они характеризуются постоянной готовностью к работе, простотой пуска, управления и реверсирования, сравнительно небольшими габаритами и массой, экономичностью, простотой эксплуатации и надежностью в работе, способностью выдерживать кратковременные перегрузки, пригодностью для индивидуального привода механизмов машин. Основной их недостаток — зависимость от внешнего источника энергии.

Двигатели внутреннего сгорания применяют в основном в самоходных строительных машинах. Их достоинствами являются автономность от внешних источников энергии, высокая экономичность, небольшой вес, приходящийся на единицу мощности, постоянная готовность к работе. В двигателях внутреннего сгорания тепловая энергия сжигаемого в смеси с воздухом топлива преобразуется в механическую энергию вращающегося коленчатого вала. При сгорании сжатой движущимся поршнем топливовоздушнои смеси в цилиндре двигателя продукты сгорания (газы) расширяются, давят на поршень, который через шатун передает усилие на коленчатый вал, заставляя его вращаться. Вал двигателя соединяется с трансмиссией машины гидравлической или фрикционной муфтой.

По виду потребляемого топлива и способу его воспламенения различают карбюраторные двигатели, работающие на бензине или газе с воспламенением топливовоздушнои смеси, приготовленной в карбюраторе, электрической искрой, и дизели, работающие на дизельном топливе с воспламенением топливовоздушнои смеси в результате ее нагрева при сжатии в цилиндрах. Дизели получили преимущественное распространение благодаря большей (в 1, 3…1, 5 раза) экономичности, более высокому (на 30…40%) КПД и способности работать на более дешевом топливе.

К недостаткам двигателей внутреннего сгорания относятся: невозможность реверсирования (изменения направления вращения вала) и пуска под нагрузкой, сравнительно небольшой диапазон непосредственного регулирования скорости и крутящего момента, большая чувствительность к перегрузкам, сложность пуска при низких температурах, сравнительно малый срок службы (3000…4000 ч), высокая стоимость эксплуатации.

Различают одно- и многомоторные приводы. При одномоторном приводе движение механизмам и рабочему органу машины передается от основного двигателя (дизеля) через механическую трансмиссию. При многомоторном приводе каждый механизм и рабочий орган машины приводится в действие индивидуальным двигателем. Многомоторный привод применяется в машинах с большим количеством механизмов и может быть электрическим при питании индивидуальных электродвигателей от внешней сети и комбинированным автономным, при котором основной двигатель (дизель) приводит в действие генератор, питающий током индивидуальные электродвигатели (дизель-электрический привод), гидравлические насосы, нагнетающие рабочую жидкость в гидравлические двигатели (дизель-гидравлический привод), компрессор, питающий сжатым воздухом пневматические двигатели (дизель-пневматический привод) и т.п. Многомоторный привод упрощает кинематику машин (отсутствуют сложные и громоздкие механические трансмиссии), обеспечивает в широком диапазоне плавное бесступенчатое регулирование скоростей механизмов и рабочего органа, позволяет автоматизировать управление машинами.

Гидравлический привод применяется в большинстве современных строительных машин (экскаваторов, кранов, подъемников, погрузчиков, бульдозеров, скреперов и др.) для передачи мощности от основного двигателя к рабочему органу и исполнительным механизмам, а также в системах управления машин. В гидроприводе, называемом объемным или статическим, используется энергия практически несжимаемой рабочей жидкости (минеральное масло), нагнетаемой гидравлическими насосами. Основными достоинствами гидравлического привода являются: высокий КПД, экономичность, удобство управления и реверсирования, способность обеспечивать большие передаточные числа, бесступенчатое независимое регулирование в широком диапазоне скоростей исполнительных механизмов, простота преобразования вращательного движения в поступательное, предохранение двигателя и механизмов от перегрузок, компактность конструкции и надежность в работе.

. Насосы преобразуют механическую энергию привода в энергию потока рабочей жидкости и характеризуются развиваемым давлением и подачей (производительностью). Гидромоторы преобразуют энергию потока рабочей жидкости в механическую, вращая приводные валы механизмов, и характеризуются развиваемым крутящим моментом и частотой вращения вала.

Рис. 1.33. Шестеренный односекционный насос

Шестеренные насосы выполняют с внешним и внутренним зацеплением пар шестерен, составляющих одну, две или три секции насоса

В шестеренных гидромоторах энергия рабочей жидкости, подводимой к шестерням от насоса, преобразуется в крутящий момент выходного вала.

Роторно-поршневые насосы и гидромоторы разделяют на аксиально-поршневые и радиально-поршневые. Аксиально-поршневые насосы (рис. 1.34, а) и гидромоторы имеют одинаковую конструкцию и состоят из вращающегося цилиндрового блока 5, поршней со штоками 2, приводного вала и неподвижного распределительного диска 6. По окружности блока расположены восемь цилиндров 4. При вращении блока, наклоненного к оси приводного вала под угоном а = 15+30°. поршни вращаются вместе с блоком и одновременно движутся возвратно-поступательно в его цилиндрах. попеременно засасывая рабочую жидкость из гидробака и’ выталкивая ее в напорную магистраль. Жидкость засасывается и нагнетается поршнями через дуговые окна в распределительном диске 6. Перемычки между окнами отделяют полость всасывания от полости нагнетания. При вращении блока отверстия цилиндров соединяются либо со всасывающей, либо с напорной магистралями. Угол наклона а качающего блока определяет ход поршней и подачу насоса.

Рис. 1.34. Принципиальные схемы поршневых насосов

Различают нерегулируемые (постоянной подачи) насосы, у которых угол а постоянный, и регулируемые (переменной подачи) насосы. у которых угол а можно плавно изменять в процессе работы

Регулируемые аксиально-поршневые насосы, снабженные устройствами для поворота оси блока в зависимости от давления в системе, используют для автоматического регулирования усилия и скорости рабочего органа или исполнительного механизма машины при колебаниях внешней нагрузки. В гидроприводах одноковшовых экскаваторов и стреловых самоходных кранов применяют сдвоенные аксиально-поршневые насосы, установленные в одном корпусе. Такие насосы нагнетают рабочую жидкость обычно в две напорные магистрали. Современные аксиально-поршневые насосы унифицированы, имеют высокий КПД (0, 96…0, 98) и развивают рабочее давление до 35 Мпа; производительность их достигает 1000 л/мин, а частота вращения — до 3000 мин.

При использовании аксиально-поршневого насоса в качестве гидромотора по его напорной магистрали от насоса нагнетается рабочая жидкость, и ее давление на поршни преобразуется во вращение приводного вала. Отработанная жидкость отводится от гидромотора по сливному трубопроводу. Для реверсирования гидромотора меняют местами нагнетательный и сливной трубопроводы или изменяют направление потоков жидкости в них на противоположное.

 

Рис. 1.35. Радиально-поршневой гидромотор

Основными элементами радиально-поршневых насосов и гидромоторов являются неподвижный статор и несоосный с ним вращающийся ротор с цилиндрами, в которых движутся Реверсирование насоса осуществляется изменением положения эксцентриситета путем перемещения статора, в результате чего действия полостей всасывания и нагнетания меняются на обратные. Радиально-поршневые насосы имеют 1…9 поршней, развивают рабочее давление до 25 МПа и s обеспечивают подачу 5…500 л/мин при частоте вращения ротора 25… 100 с.

Гидроцилиндры двустороннего действия бывают с односторонним и двусторонним штоком (рис. 1.36, д, е).

При необходимости перемещения подвижного звена на значительные расстояния (до 2, 5…3 м) применяют телескопические гидроцилиндры (рис. 1.36, д). Полость цилиндра, в которой расположен шток, называется штоковой, противоположная — поршневой. Рабочая жидкость в поршневую и штоковую полости поступает соответственно через угловые штуцера. Герметичное разделение штоковой и поршневой полостей обеспечивается уплотнениями (манжетами) поршня. Утечке рабочей жидкости из штоковой полости препятствует уплотнение (манжета). Хвостовые части цилиндров и головки штоков имеют сферические подшипники для шарнирного крепления к элементам машин. Для смягчения ударов в конце хода поршня служит демпфирующий клапан. При обратном ходе поршня демпфером является упор.

Гидрораспределители управляют потоком жидкости, подаваемой в гидравлические двигатели, последовательностью их работы и обеспечивают отвод отработавшей жидкости из сливных полостей в бак. Кроме того, распределители раверсируют гидродвигатели и регулируют их скорость. Различают золотниковые, клапанные и крановые распределители. Наиболее распространены золотниковые распределители, управляющие потоком жидкости с помощью движущихся возвратно-поступательно золотников. По числу присоединенных каналов золотниковые распределители делят на двух-, трех- и четырехходовые. Для управления гидродвигателями двустороннего действия применяют, как правило, четырехходовые распределители с четырьмя каналами (напор, слив и два рабочих отвода). По числу фиксированных положений золотника — рабочих позиций — различают трех- и четырехпозиционные распределители. Положения золотника трехпозиционного распределителя — два рабочих и одно нейтральное, четырехпозиционного — два рабочих, одно нейтральное и одно плавающее.

Четырехсекционный распределитель обеспечивает четвертое — плавающее положение, при котором штоковая и поршневая полости соединены со сливной линией, а подвижное звено (шток или цилиндр) может свободно перемещаться под действием внешней нагрузки.

К регулирующим устройствам относятся клапаны различного назначения и дроссели. Давление в системе регулируют предохранительными и редукционными клапанами. Предохранительные клапаны ограничивают максимальное давление, развиваемое насосом, и срабатывают (открывающие) при давлении, превышающем номинальное на 10…15%, перепуская жидкость в сливную магистраль. Они защищают элементы гидропривода от перегрузок.

Редукционные клапаны понижают давление подаваемой в систему жидкости до определенной величины независимо от давления, развиваемого насосом. Обратные клапаны пропускают поток жидкости только в одном направлении. Дроссели регулируют подачу жидкости в гидродвигатели с целью изменения скорости подвижных звеньев гидроцилиндров или частоты вращения гидромоторов. Они представляют собой местные гидравлические сопротивления, устанавливаются на трубопроводе, соединяющем сливную и напорную линии, и отводят часть потока в сливную линию, уменьшая подачу жидкости в гидродвигатель.

Гидродинамические передачи представляют собой гидромуфту или гидротрансформатор, которые устанавливаются между основным двигателем и трансмиссией машины. Принцип действия таких передач основан на гидродинамической (т.е. через жидкость) связи между их ведущими и ведомыми элементами.

С лопаток турбинного колеса жидкость возвращается в насосное колесо, образуя замкнутый поток. Гидромуфты характеризуются примерным равенством крутящих моментов на ведущем и ведомом валах и надежно предохраняют двигатель машины от перегрузок.

Пневматический привод использует энергию сжатого в компрессорах до 0, 5…0, 8 МПа воздуха и применяется в пневматических молотах, ручных пневмомашинах и вибраторах, для питания различной аппаратуры при отделочных работах, а также в системах управления машин для плавного включения механизмов в работу и их торможения. Основными частями такого привода являются: компрессор с приводным двигателем и воздухосборником (ресивером), пневматические двигатели вращательного и возвратно-поступательного действия, соединительные воздухопроводы, регуляторы давления и предохранительные клапаны, воздушные фильтры и масловодоотделители. Отработанный воздух из пневмодвигателей выбрасывается непосредственно в атмосферу. Компрессоры приводятся в действие от электродвигателей и двигателей внутреннего сгорания.

Компрессор с приводом и вспомогательной аппаратурой составляют компрессорную установку, которая может быть переносной и передвижной. Передвижные установки, смонтированные на одноосных и двуосных тележках, прицепах, шасси грузовых автомобилей (самоходные установки), широко используют на строительно-монтажных работах. Переносные установки применяют в основном при выполнении отделочных (окрасочных) работ небольших объемов. Компрессоры по принципу действия разделяют на поршневые, ротационные, турбинные, диафрагмовые и винтовые. Поршневые компрессоры, получившие в городском строительстве наибольшее распространение, бывают одно- и двухступенчатого сжатия.

В компрессоре одноступенчатого сжатия (рис. 1.38, а) внутри цилиндра движется возвратно-поступательно поршень, шарнирно соединенный шатуном с приводным коленчатым валом. На крышке цилиндра установлены подпружиненные автоматически действующие клапаны — всасывающий и нагнетательный. При движении поршня вниз в цилиндре создается разряжение, при котором поступающий через фильтр атмосферный воздух открывает клапан и заполняет цилиндр







© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.