Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Computer Keyboards






 

A keyboard's primary function is to act as an input device. Using a keyboard, a person can type a document, use keystroke shortcuts, access menus, play games and perform a variety of other tasks. Keyboards can have different keys depending on the manufacturer, the operating system they're designed for, and whether they are attached to a desktop computer or part of a laptop. But for the most part, these keys, also called keycaps, are the same size and shape from keyboard to keyboard. They're also placed at a similar distance from one another in a similar pattern, no matter what language or alphabet the keys represent.

Most keyboards have between 80 and 110 keys, including:

· Typing keys

· A numeric keypad

· Function keys

· Control keys

 

The typing keys include the letters of the alphabet, generally laid out in the same pattern used for typewriters. This layout is known as QWERTY for its first six letters.

Keyboards can also use a variety of other typing key arrangements. The most widely known is Dvorak, named for its creator, August Dvorak. The Dvorak layout places all of the vowels on the left side of the keyboard and the most common consonants on the right. The most commonly used letters are all found along the home row. The home row is the main row where you place your fingers when you begin typing. People who prefer the Dvorak layout say it increases their typing speed and reduces fatigue. Other layouts include ABCDE, XPeRT, QWERTZ and AZERTY. Each is named for the first keys in the pattern. The QWERTZ and AZERTY arrangements are commonly used in Europe.

The numeric keypad is a more recent addition to the computer keyboard. As the use of computers in business environments increased, so did the need for speedy data entry. Since a large part of the data was numbers, a set of 17 keys, arranged in the same configuration found on adding machines and calculators, was added to the keyboard.

In 1986, IBM further extended the basic keyboard with the addition of function and control keys. Applications and operating systems can assign specific commands to the function keys. Control keys provide cursor and screen control. Four arrow keys arranged in an inverted T formation between the typing keys and numeric keypad move the cursor on the screen in small increments.

Other common control keys include:

· Home

· End

· Insert

· Delete

· Page Up

· Page Down

· Control (Ctrl)

· Alternate (Alt)

· Escape (Esc)

 

The Windows keyboard adds some extra control keys: two Windows or Start keys, and an Application key. Apple keyboards, on the other hand, have Command (also known as " Apple") keys. A keyboard developed for Linux users features Linux-specific hot keys, including one marked with " Tux" the penguin -- the Linux logo/mascot.

A keyboard is a lot like a miniature computer. It has its own processor and circuitry that carries information to and from that processor. A large part of this circuitry makes up the key matrix.

The key matrix is a grid of circuits underneath the keys. When you press a key, it presses a switch, completing the circuit and allowing a tiny amount of current to flow through. The mechanical action of the switch causes some vibration, called bounce, which the processor filters out. If you press and hold a key, the processor recognizes it as the equivalent of pressing a key repeatedly.

As you type, the processor in the keyboard analyzes the key matrix and determines what characters to send to the computer. It maintains these characters in its memory buffer and then sends the data.

Many keyboards connect to the computer through a cable with a PS/2 or USB (Universal Serial Bus) connector. Laptops use internal connectors. Regardless of which type of connector is used, the cable must carry power to the keyboard, and it must carry signals from the keyboard back to the computer.

Wireless keyboards, on the other hand, connect to the computer through infrared (IR), radio frequency (RF) or Bluetooth connections. IR and RF connections are similar to what you'd find in a remote control. Regardless of which sort of signal they use, wireless keyboards require a receiver, either built in or plugged in to the USB port, to communicate with the computer. Since they don't have a physical connection to the computer, wireless keyboards have an AC power connection or use batteries for power.

Whether it's through a cable or wireless, the signal from the keyboard is monitored by the computer's keyboard controller. This is an integrated circuit (IC) that processes all of the data that comes from the keyboard and forwards it to the operating system. When the operating system (OS) is notified that there is data from the keyboard, it checks to see if the keyboard data is a system level command. A good example of this is Ctrl-Alt-Delete on a Windows computer, which reboots the system. Then, the OS passes the keyboard data on to the current application.

The application determines whether the keyboard data is a command, like Alt-f, which opens the File menu in a Windows application. If the data is not a command, the application accepts it as content, which can be anything from typing a document to entering a URL to performing a calculation. If the current application does not accept keyboard data, it simply ignores the information. This whole process, from pressing the key to entering content into an application, happens almost instantaneously.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.