Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Циклические виды спорта 3 страница






 

 

Вопросы к занятию

1.Охарактеризуйте биохимические и структурные факторы, определяющие проявление мышечной силы и скорости сокращения.

2. Охарактеризуйте биохимический состав и структурные особенности мышечных волокон различных типов.

3. Какое значение имеет соотношение волокон различных типов для проявления силы скорости и выносливости?

4. Какая связь между силой, скоростью и мощностью, ее биохимические детерминанты.

5. Охарактеризуйте биохимические и структурные изменения в мышцах и нервных волокнах при тренировке с использованием скоростно-силовых упражнений.

6.Биохимическая характеристика современных методов тренировки, направленных на развитие максимальной мышечной силы, мышечной массы и скоростных качеств спортсменов.

 

 

ТЕМА 8

БИОХИМИЧЕСКИЕ ОСНОВЫ ВЫНОСЛИВОСТИ

СПОРТСМЕНОВ

 

Цель занятия: Изучить биохимические факторы, определяющие проявление алактатного, гликолитического, аэробного компонентов выносливости, ее специфичность и биохимические основы методов совершенствования отдельных компонентов выносливости.

 

Выносливость можно определить как способность к выполнению какой-либо деятельности во времени без снижения эффективности, Она зависит от анаэробной и аэробной производительности человека. Аэробная производительность измеряется величиной максимального потребления кислорода, анаэробная производительность характеризуется максимальной относительной величиной кислородного долга. Выносливость человека к напряженной мышечной деятельности всегда носит специфический характер и определяется теми свойствами организма, которые препятствуют возникновению в организме изменений, вызывающих утомление, и обеспечивают устойчивость организма к возникающим при работе биохимическим изменениям. К числу таких свойств организма в первую очередь относятся особенности, которые определяются возможностями систем энергообеспечения. В соответствии с тремя основными путями ресинтеза АТФ принято различать три основные компонента выносливости: алактатный, гликолитический и аэробный.

Алактатный компонент выносливости зависит от запасов креатинфосфата в работающих органах, экономностью его расходования при работе и устойчивостью ферментов алактатной анаэробной системы (АТФ - азы миозина и креатинфосфокиназы) в условиях накопления продуктов анаэробного распада. Поэтому тренировка, используемая для совершенствования алактатного компонента выносливости должна привести к максимальному исчерпанию алактатных резервов в работающих мышцах и повысить устойчивость ферментов алактатной системы к накоплению продуктов анаэробного распада. С этой целью применяются методы повторной и интервальной работы с большим числом повторений кратковременных упражнений (10-15 сек.) высокой интенсивности (90-95 % Wmax) и паузами отдыха 2, 5-3 мин, необходимыми для обеспечения восстановления алактатных резервов.

Возможности гликолитического компонента выносливости определяются углеводными ресурсами организма (в частности, гликогена мышц), экономичностью их расходования, активностью ферментов гликолиза и компенсаторными реакциями, обеспечивающими способность продолжать работу в условиях быстро нарастающих анаэробных изменений внутри организма. Высокая значимость компенсаторных реакций организма для протекания гликолитических процессов при мышечной деятельности связана с образованием молочной кислоты, вызывающей закисление среды, что приводит к снижению активности ферментов, особенно АТФ - азы и фосфофруктокиназы. Поэтому для гликолитического компонента выносливости первостепенное значение имеют возможности буферных систем организма, обладающих способностью связывать молочную кислоту, а также устойчивость ферментов к изменениям рН внутренней среды.

Для совершенствования гликолитического компонента выносливости могут использоваться методы однократной предельной, повторной и интервальной работы. Применяемые упражнения должны обеспечить предельное усиление гликолиза в работающих мышцах, для этого пригодны упражнения длительностью от 30 сек. до 3 мин. с помощью близкой к предельной. Интервалы отдыха между упражнениями должны быть непрерывно сокращающимися. Они определяются по показателю восстановления (соотношение содержания молочной кислоты в последнем повторении к ее содержанию в предыдущем).

Аэробный компонент выносливости, который представлен в работе небольшой мощности, но длительной зависит от аэробных энергетических возможностей спортсмена и способности к их мобилизации при работе, возможности и устойчивости систем, обеспечивающих доставку кислорода к работающим органам и тканям, количества и активности ферментов аэробного процесса.

Повышение физических возможностей при тренировке аэробного компонента выносливости связано с увеличением поступления крови и кислорода в клетки работающей мышцы, что объясняется адаптацией самих мышц, повышающей их возможности к аэробным процессам. Для развития их могут применяться методы однократной непрерывной работы (объем нагрузки составляет не менее 30 мин.), повторной (продолжительность упражнения не менее 3 мин) и несколько видов интервальной работы, в которых наибольшее воздействие оказывают интервалы отдыха.

Следует отметить, что максимальное развитие биохимических, молекулярных основ качеств двигательной деятельности происходит неодновременно: раньше всего максимума достигают основы выносливости к длительной работе, затем силы, в последнюю очередь -быстроты. При прекращении тренировки все постепенно возвращается к исходному уровню в обратном порядке: в первую очередь снижается быстрота, способность к скоростной работе максимальной и субмаксимальной мощности, позднее сила, а в последнюю очередь – выносливость к длительной работе в условиях устойчивого состояния.

 

 

Вопросы к занятию

1. Биохимические факторы, определяющие проявление алактатного, гликолитичесчкого и аэробного компонентов выносливости.

2. Биохимические показатели, применяемые для оценки выносливости.

3. Дайте биохимическое обоснование причин высокой специфичности анаэробных компонентов выносливости.

4. Какие биохимические факторы определяют положительную взаимосвязь аэробного компонента выносливости с гликолитическим?

5. Дайте биохимическое обоснование основным методическим приемам, используемым для совершенствования отдельных компонентов выносливости.

6. Особенности биохимических изменений в организме при применении непрерывных (равномерных и переменных), повторных и интервальных методов тренировки.

 

 

ТЕМА 9

 

ОСОБЕННОСТИ БИОХИМИЧЕСКИХ ИЗМЕНЕНИЙ В ОРГАНИЗМЕ ПРИ ЗАНЯТИЯХ РАЗЛИЧНЫМИ ВИДАМИ СПОРТА

 

Цель занятия: Изучить характер биохимических изменений в организме спортсменов при выполнении нагрузок различной мощности.

 

При рассмотрении биохимических изменений в организме, происходящих при занятиях различными видами спорта, наиболее удобно разделение всех спортивных упражнений на циклические и ациклические. Первые характеризуются повторностью фаз движения и различаются по относительной мощности работы, характеру движения в среде, в которой выполняется упражнение.

Вторым, т.е. ациклическим упражнениям свойственно отсутствие повторности фаз. Это кратковременные, однократные движения максимальной и субмаксимальной мощности и комбинации (прыжки, метания, поднятие тяжестей, гимнастические упражнении) или упражнения, совершаемые в переменных условиях, когда характер и мощность движения все время изменяются (единоборства, спортивные игры).

В биохимических изменениях, возникающих в организме при занятиях некоторыми видами спорта, обнаруживается выраженное сходство. Это обусловлено целым рядом причин. Во-первых, наиболее выраженные изменения в организме при мышечной деятельности связаны с деятельностью механизмов энергетического обеспечения работы. Существуют три основных механизма энергообеспечения: аэробный, связанный с использованием кислорода воздуха, анаэробный алактатный (креатинфосфатный) и анаэробный лактатный (гликолитический). Эти механизмы энергопродукции обеспечивают ресинтез основного энергетического источника мышц – АТФ. В зависимости от специфики выполняемой мышечной деятельности доля каждого из видов удельной энергопродукции будет меняться. Участие различных механизмов в энергетическом обеспечении работы и обусловленные их деятельностью биохимические изменения в организме определяются рядом факторов, в той или иной мере представленных во всех видах спорта. Среди этих факторов в первую очередь необходимо выделить следующие:

режим деятельности мышц (статический, динамический, смешанный);

количество участвующих мышц;

мощность и продолжительность работы.

Статический режим деятельности мышц затрудняет кровообращение, снабжение работающих мышц кислородом и питательными веществами, удаление продуктов распада. Это приводит к повышению роли анаэробных процессов в энергетическом обеспечении работы, т.е. делает ее более - анаэробной. Напротив, динамический характер способствует кровообращению в работающих мышцах, улучшает снабжение их энергетическими субстратами, кислородом, удаление продуктов распада, т.е. способствует аэробизации работы.

Выполнение одной и той же работы с участием различного числа мышечных групп сопровождается разными биохимическими сдвигами в организме. Уменьшение количества участвующих в работе мышц повышает значимость анаэробных процессов в энергетическом обеспечении работы, т.е. приводит к усилению анаэробных сдвигов в организме. Выполнение интенсивной мышечной работы с участием небольшого числа мышечных групп может сопровождаться анаэробными сдвигами в самих работающих мышцах. Однако в организме в целом это может и не вызывать существенных изменений. Значительные анаэробные сдвиги в организме происходят при выполнении интенсивной мышечной работы глобального характера, которая осуществляется при участии больших мышечных групп.

Наиболее важными факторами, определяющими характер и глубину биохимических изменений в организме, являются мощность и продолжительность упражнения.

Основное значение для биохимической оценки физических упражнений имеет их мощность, так как именно этим определяется величина кислородного запроса. От степени его удовлетворения зависит протекание химических процессов, связанных с энергетическим обеспечением мышечной деятельности и ресинтезом АТФ во время нее.

Между мощностью и продолжительностью упражнения существует обратная зависимость: чем интенсивней работа, тем более короткое время ее можно выполнять. Наиболее отчетливо эта зависимость проявляется в циклических видах спорта, например, в легкоатлетическом беге; средняя скорость бега быстро снижается с увеличением дистанции. Мощность и продолжительность упражнения определяют энергозатраты (общие и в единицу времени работы), как и участие различных энергообразующих механизмов в энергетическом обеспечении работы. В свою очередь участие в энергообеспечении различных механизмов преобразования энергии, степень их активизации в наибольшей мере определяют характер и глубину биохимических изменений.

Кратковременные упражнения высокой интенсивности обеспечиваются энергией преимущественно за счет анаэробных механизмов. С увеличением продолжительности работы возрастает роль анаэробных процессов.

Различия в энергетическом обеспечении упражнений разной мощности и продолжительности лежат в основе деления циклических видов спорта на зоны мощности. В соответствии с принятой классификацией все упражнения циклических видов спорта принято делить на четыре зоны мощности: максимальную (30 с), субмаксимальную (не более 5 мин), большую (до 40 мин) и умеренную (более 40 мин).

Упражнения циклических видов спорта, попадающие по своей мощности и продолжительности в одну и ту же зону мощности, характеризуются сходством биохимических изменений. Хотя специфика того или иного вида спорта может накладывать отпечаток на биохимические изменения в организме, и прежде всего на их глубину.

 

 

Циклические виды спорта

 

Л е г к а я а т л е т и к а

Наиболее наглядное представление о биохимических сдвигах в организме при выполнении упражнений разных зон мощности можно получить при анализе легкоатлетического бега. Ни один другой циклический вид спорта не имеет такого широкого диапазона мощности и продолжительности упражнений и такой высокой степени их градации.

 

Упражнения максимальной зоны мощности

(бег на 100 и 200 м)

 

Из-за кратковременности работы при ее выполнении в организме не происходит значительных изменений. Основной механизм энергообеспечения при беге на 100 м и креатинфосфатный, при беге на 200 м существенную роль играет и гликолиз. В мышцах происходит снижение содержания креатинфосфата и гликогена, повышается содержание креатина, неорганического фосфата, молочной кислоты, повышается активность ферментов анаэробного обмена. Выход молочной кислоты из мышц в кровь, протекающий сравнительно медленно, происходит в основном после окончания работы. Как правило, после работы максимальной интенсивности наивысшие концентрации в крови молочной кислоты наблюдаются на 5-10 мин восстановительного периода и достигают 100-150 мг %. Это связано не только с замедленным выходом молочной кислоты из мышц в кровь, но и с возможностью ее образования после работы, поскольку ресинтез креатин- фосфата частично происходит за счет гликолиза.

Происходит увеличение легочной вентиляции, потребление кислорода, частоты сердечных сокращений. Однако ни один из указанных показателей не достигает за время работы своих максимальных значений. В течение нескольких секунд после завершения работы может происходить дальнейшее увеличение частоты сердечных сокращений и потребление кислорода.

Потребляемое за работу количество кислорода составляет 5-10 % от кислородного запроса, который при работе максимальной интенсивности может превышать 30 л/мин. После работы образуется значительная величина кислородного долга (95% от кислородного запроса), содержащего алактатную и лактатную фракции. При этом после бега на 200 м величина алактатной фракции приближается к своему максимальному для данного испытуемого значению.

 

Таблица

Энергетическое обеспечение мышечной деятельности

Вид нагрузки Пути ресинтеза АТФ Окисляемый субстрат Кислородный долг, % Содержание лактата в крови, мг. %
Работа максимальной мощности (до 30 с)
Прыжок с места Креатинкиназная реакция Гликолитическое фосфорилирование Креатинфосфат   Гликоген мышц 95-97 15-100
Одноразовый подъем штанги То же То же То же То же
Гимнастическое упражнение То же То же То же То же
Спринт и т.д. То же То же То же То же
Работа субмаксимальной мощности (до 5 мин.)
Бег на 800 м Креатинкиназная реакция Креатинфосфат    
  Гликолитическое фосфорилирование Дыхательное фосфорилирование Гликоген мышц Сахар крови Гликоген печени   75-94   до 450
Плавание на 400 м То же То же То же То же
Велогонки на короткие дистанции То же То же То же То же
Поединок То же То же То же То же
Работа умеренной мощности (более 40 мин)
Спортивная ходьба Креатинкиназная реакция Гликолитическое фосфорилирование Дыхательное фосфорилирование Креатинфосфат Гликоген мышц Сахар крови Гликоген печени Жирные кислоты Аминокислоты Молочная кислота   До 10   20-40
Марафонский бег То же То же То же То же  
Тренировочное занятие То же То же То же То же
Волейбол То же То же То же То же
Вело-и лыжные гонки на сверхдлинные дистанции и т.д.   То же   То же   То же   То же

Восстановление после работы максимальной интенсивности протекает сравнительно быстро и завершается к 35-40 мин восстановительного периода.

Кумулятивные биохимические изменения в организме при тренировке упражнениями максимальной зоны мощности заключаются в накоплении в организме креатинфосфата, гликогена мышц, повышении активности ряда ферментов, особенно АТФ-азы, креатинфосфокиназы, ферментов гликолиза, повышении содержания сократительных белков и других изменениях.

После 30-40-минутного отдыха выполнение упражнения можно повторять. Однако в спортивной практике часто применяют интервальный метод, при котором период отдыха спринтеров постепенно сокращается. Это повышает аэробную способность организма и его адаптацию к работе в условиях гипоксии.

Постоянная тренировка упражнениями максимсальной мощности способствует накоплению в мышцах креатинфосфата, сократительных белков и гликогена, повышает активность АТФ-азы, креатинфосфатазы и ферментов гликолиза.

 

Упражнения субмаксимальной зоны мощности

(бег 400, 800, 1000, 1500 м)

Основным механизмом энергообеспечения является гликолиз, но важную роль играют креатинфосфатные и аэробнвые процессы. Значимость аэробного механизма повышается с увеличением продолжительности работы (в пределах данно й зоны мощности). Пробегание дистанций легкоатлетического бега, относящихся к субмаксимальной зоне мощности, сопровождается повышением активности ферментов энергетического обмена, накоплением в организме наибольших количеств молочной кислоты, концентрация которой в крови может достигать 250 мг % и более. Часть молочной кислоты связывается буферными системами организма, которые исчерпывают себя при выполнении упражнений этой зоны на 50-60 %. Происходит значительный сдвиг рН внутренней среды в кислую сторону. Так, рН крови у квалифицированных спортсменов сможет снижаться до значения 6, 9-7, 0.

Накопление больших количеств молочной кислоты в крови меняет проницаемость почечных канальцев, вследствие чего в моче появляется белок. В мышцах, и отчасти в крови, повышается содержание пировиноградной кислоты, креатина, фосфорной кислоты.

Непосредственно в процессе бега на дистанции, относящиеся к зоне субмаксимальной мощности, происходит повышение содержания сахара в крови. Однако из-за кратковременности работы это повышение не столь значительно.

Легочная вентиляция и потребление кислорода во время бега приближаются к своим максимальным значениям. Близких к максимальным значениям достигает и частота сердечных сокращений (до 200 уд/мин и выше).

После бега на 400-1500м у спортсменов зарегистрированы близкие к максимальной для них величины кислородного долга (90-50 %), содержащего как алактатную, так и лактатную фракции.

Выполнение субмаксимальных нагрузок значительно повышает активность обмена веществ в организме, при котором может наступить частичное разобщение процессов окислительного фосфорилирования, вызывающее повышение температуры тела на 1-1, 5оС. Это усиливает потоотделение, сопровождающееся выведением из организма части молочной кислоты, а также фосфатов, содержание которых в крови повышено.

В связи с тем, что при беге на средние дистанции энергообеспечение организма происходит анаэробным и аэробным путями, в организме бегунов в процессе работы в значительной мере используются внутримышечные энергетические субстраты (креатинфосфат, гликоген), а также гликоген печени. Об этом свидетельствует существенное повышение содержания сахара в крови (до 2, 4 г/л), которое на финише может снижаться (особенно у малотренированных спортсменов) в результате преждевременного развития тормозных процессов в центральной нервной системе.

Характерной особенностью нагрузки субмаксимальной мощности является наличие «мертвой точки» (внезапное понижение работоспособности), которая наступает при беге на 800м – на 60-80с, при беге на 1500м – на 2-3 мин и может быть преодолена волевым усилием спортсменов. При правильной организации тренировки, оптимальном распределении сил на дистанции подобное состояние организма может и не наступить

Основной причиной «мертвой точки» являются биохимические нарушения в отдельных зонах головного мозга, что свидетельствует о кортикальном происхождении этой точки.

Все биохимические изменения, возникающие в организме спортсменов при беге на средние дистанции, могут наблюдаться также при беге на такие дистанции с барьерами. Продолжительность восстановительного периода после пробега средних дистанций составляет от одного до двух часов.

В процессе тренировки спортсменов упражнениями субмаксималоьной мощности особое внимание следует уделять усовершенствованию анаэробных путей ресинтеза АТФ, а также адаптации спортсменов к значительному повышению кислотности среды их организма. Не менее важно развивать и аэробные возможности организма. Поэтому правильная постановка тренировочных занятий в этом виде спорта значительно повышает накопление в организме креатинфосфата и гликогена мышц и печени, интенсифицирует реакции гликолиза и окислительного фосфорилирования (путем увеличения количества и повышения активности ферментов), а также повышает буферную емкость систем организма.

 

Упражнения большой зоны мощности

 

Бег на 10000м, как и спортивная ходьба, относится к упражнениям большой зоны мощности, продолжающимся 20-30 мин. Основным механизмом энергообеспечения является аэробный процесс, но роль гликолиза еще велика. Основным источником энергии является гликоген мышц и печени, содержание которого в процессе работы существенно понижается. Об интенсивном расходовании гликогена печени свидетельствует повышение концентрации сахара в крови, но на длинных дистанциях эта концентрация может понижаться. При более продолжительной работе на дистанции кроме углеводов на энергетические цели активно используются резервные липиды, в связи с чем в кроки повышается уровень нейтральных липидов, а также кетоновых тел, образующихся при окислении жирных кислот. Основное количество энергии дают аэробные процессы, деятельность которых усиливается до максимального уровня. Это обеспечивается максимальным увеличением потребления кислорода, которое сохраняется у квалифицированных спортсменов практически на протяжении всей работы, и значительным повышением активности ферментов аэробного обмена. В свою очередь, максимальное потребление кислорода обеспечивается дыхательной и сердечно - сосудистой системы (так, частота пульса достигает 190 уд/мин и более), а также повышением содержания гемоглобина в крови за счет выхода в кровяное русло из депо богатой гемоглобином крови.

Происходит значительное разогревание организма, температура тела может повыситься до 39о и более. Это усиливает потоотделение, сопровождающееся выносом из организма минеральных веществ, части продуктов анаэробного обмена.

Продолжительность восстановительного периода после бега на дистанции данной зоны мощности составляют от 6-12 ч до суток. При этом ликвидируется кислородный долг, устраняется избыток молочной кислоты, восстанавливается израсходованный энергетический потенциал организма за счет рационального питания.

Тренировка упражнениями большой мощности направлена прежде всего на развитие аэробного и гликолитического путей энергообеспечения, увеличение кислородной емкости крови и мышц, повышение уровня легко мобилизуемых источников энергии (гликогена печени и мышц, внутримышечных резервных липидов) и активности ферментов. Существенное изменение при этом происходит в сердечно - сосудистой системе: увеличиваются размеры сердца, возрастает количество кровеносных капи лляров в мышцах, что способствует более успешному выполнению специфической для бегунов работы.

 

Упражнения умеренной зоны мощности

 

Бег на (15, 20, 30км и 42195м) является работой умеренной мощности, которая, в отличие от прежних видов легкоатлетического бега, выполняется в условиях стойкого равновесия между кислородной потребностью организма и потреблением кислорода. Расход энергии в единицу времени при беге на эти дистанции сравнительно невысок, однако общие энергозатраты велики и могут достигать 2000 ккал и более. Основной механизм энергообеспечения аэробный. Анаэробные процессы могут играть некоторую роль только при стартовом разгоне, рывках на дистанции и, на финише.

Анаэробные сдвиги в организме, как правило, бывают незначительными, величина кислородного долга, образующегося после такой работы, невелика. Поэтому повышение уровня молочной кислоты в крови спортсменов сравнительно невелико и достигает 0, 2-0, 7 г/л. Основное количество молочной кислоты образуется в начальной фазе работы и в процессе дальнейшего выполнения нагрузки подвергается интенсивному окислению, в связи с чем на финише содержание молочной кислоты в крови спортсменов может понижаться до исходного уровня. Работа в зоне умеренной мощности совершается в истинном устойчивом состоянии, т.е. аэробные процессы, совершающиеся за счет кислорода, полностью удовлетворяют энергетические потребности работы. Уровень текущего О2- потребления на дистанциях умеренной зоны мощности ниже максимального для спортсмена уровня.

В качестве источника энергии используются углеводы и липиды, содержание которых к концу работы заметно снижается. Концентрация сахара в крови в начале работы повышается, но затем, по мере исчерпания углеводных ресурсов печени, понижается. К 40-50- мин работы содержание сахара в крови возвращается к уровню покоя, если работа совершается дольше этого периода, может снизиться ниже уровня. При высоком эмоциональном возбуждении в организме более тренированных спортсменов наблюдается еще более выраженное снижение уровня сахара. Такая значительная гипогликемия отрицательно сказывается на функционировании нервной системы и может сопровождаться появлением обморочного состояния. Причиной гипогликемического состояния является не полное исчезновение углеводных запасов, а развитие охранительного торможения центральной нервной системы и снижение секреции гормонов надпочечниками, что сопровождается резким угнетением процессов расщепления оставшегося в организме гликогена до глюкозы. Стимуляция распада гликогена введением в организм адреналина, без приема пищи, может повысить снизившийся уровень сахара в крови до нормы.

Предупредить такую «финишную» гипогликемию можно правильной организацией основного питания (за 2, 5-3 ч до старта) и дополнительным питанием (раствор «спортивного напитка») спортсменов на дистанции. С использованием липидов в качестве источника энергии связано повышение содержания в кроки промежуточных продуктов липидного обмена: свободных жирных кислот, ацетоуксусной кислоты, β - оксимасляной кислоты, ацетона.

Высокая интенсивность обмена веществ в организме спортсменов, выполняющих работу умеренной мощности, повышает температуру тела до 39, 5оС и сопровождается большими потерями воды и минеральных веществ. Последнее является одной из важных причин утомления при беге на длинные и сверхдлинные дистанции. Поэтому бегуны на длинные и сверхдлинные дистанции и представители других видов спорта, относящихся к этой зоне мощности, нуждаются в повышенном потреблении солей Nа, К, фосфорной кислоты и некоторых других минеральных веществ.

При длительной работе происходят существенные изменения в белковом обмене: снижается содержание структурных белков, белков ферментов, хромопротеидов (гемоглобина, миоглобина), нуклепротеидов и др. Причина этого - рассогласование процессов распада и синтеза белка. Первые при работе не только продолжаются, но и усиливаются вследствие высокой интенсивности обмена веществ, большой функциональной нагрузки, падающей при работе на структурные и другие белки, вторые, требующие для своего протекания энергии АТФ, при работе приостанавливаются из-за дефицита АТФ, используемого при процессах энергетического обеспечения работы.

При беге на длинные дистанции могут происходить существенные изменения гормональной деятельности (снижается продукция гормонов), что приводит к снижению содержания их в крови. Особенно тяжело преодоление сверхдлинных дистанций сказывается на растущем организме, поэтому этот вид упражнений не рекомендуется для юных спортсменов. Восстановительный период после бега на длинные и сверхдлинные дистанции продолжается до 3 и более суток.

Кумулятивные биохимические изменения при тренировке на дистанциях зоны умеренной мощности обеспечивают преимущественно повышение возможностей аэробного механизма преобразования энергии. Как правило, они более выражены, чем у бегунов на дистанции зоны большой мощности. Особенно существенно увеличивается содержание гликогена в печени, легко мобилизуемых липидов, миоглобина в мышцах, количество митохондрий и ферментов аэробного обмена. Заметно увеличиваются размеры сердца, число мышечных капилляров, улучшается регуляция деятельности сердечно - сосудистой и дыхательной систем.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.