Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Стекловолокно: способ получения, свойства, применение






 

Стекловолокно (стеклонить) — волокно или комплексная нить, формуемые из стекла. В такой форме стекло демонстрирует необычные для него свойства: не бьётся, не ломается и легко гнётся без разрушения. Это позволяет ткать из него стеклоткань, изготавливать гибкие световоды и применять во множестве других отраслей техники.

Стекловолокно имеет совершенно уникальное сочетание характеристик: повышенная прочность при сжатии и растяжении, термостойкость, негорючесть, низкая гигроскопичность, стойкость к химическому и биологическому воздействию. Из стекловолокна производят материалы с высокими тепло-, электроизоляционными и звукоизоляционными свойствами, и, конечно, механической прочностью.

Производство стекловолокна

Стекловолокно производят из лома стекла или из сырья, идентичного сырью для производства собственно стекла. Непрерывное стекловолокно формуют вытягиванием из расплавленной стекломассы через фильеры (число отверстий 200-4000) при помощи механических устройств, наматывая волокно на бобину. Диаметр волокна зависит от скорости вытягивания и диаметра фильеры. Технологический процесс может быть осуществлен в одну или в две стадии. В первом случае стекловолокно вытягивают из расплавленной стекломассы (непосредственно из стекловарочных печей), во втором используют предварительно полученные стеклянные шарики, штабики или эрклез (кусочки оплавленного стекла), которые плавят в стеклоплавильных печах или в стеклоплавильных аппаратах (сосудах) [1].

Исходный продукт, как и в других областях производства химических волокон получается в виде бесконечных элементарных волокон (филаментов), из которых далее в процессе переработки формируются или комплексные нити (диаметр филаментов 3—100 мкм (линейная плотность до 0, 1 Текс)) и длиной в паковке 20 км и более (непрерывное стекловолокно), линейная плотность до 100 Текс, или в стеклянные ровинги (продукты линейной плотностью более 100 Текс). В этом случае, как правило, продукт перерабатывается в крученые нити (ровинги) на крутильно-размоточных машинах. Данные полуфабрикаты далее могут быть подвергнуты любым формам текстильной переработки в крученые изделия (нити сложного кручения, шнуры, шпагаты, канаты), текстильные полотна (ткани, нетканые материалы), сетки (тканые, специальной структуры).

Стекловолокна также могут выпускаться в дискретном (штапельном) виде. Штапельное стекловолокно формуют путём раздува струи расплавленного стекла паром, воздухом или горячими газами и др. методами.

Также исходный стеклянный ровинг может быть переработан путем резки, рубки или разрывного штапелирования в дискретные (штапельные) волокна со штапельной длиной 0, 1 (микроволокно) - 50 см, титр волокна в данном случае как правило ниже, чем филаментных нитей и соответствует диаметру 0, 1-20 мкм. Основная масса штапельных стекловолокон перерабатывается в нетканые материалы (кардные, иглопробивные, нитепрошивные, стеклохолст) по различным технологиям (кардочесание, преобразование прочеса, иглопробивание, нитепрошивание), стекловату, штапельную пряжу. По внешнему виду непрерывное стекловолокно напоминает нити натурального или искусственного шёлка, а штапельное — короткие волокна хлопка или шерсти [1].

Существует два типа технологий производства стекловолокна – одностадийный и двухстадийный.

Двухстадийный (наиболее распространенный) способ получения волокна включает в себя стадию подготовки шихты, варки стекла, выработки эрклеза, стеклошариков или штабиков, и стадию плавления эрклеза и стеклошариков в плавильном сосуде и вытягивания волокна.

Вторая стадия получения волокна состоит из следующих операций:

1) Подготовка и подача стеклянных шариков или эрклеза в стеклоплавильный сосуд.

2) Плавление шариков и эрклеза и подготовка стекломассы к формованию.

3) Заправка грубых волокон (при использовании штабиков).

4) Формование волокон.

5) Охлаждение волокон.

6) Нанесение на волокна замасливателя и соединение их в нить.

7) Раскладка и намотка нити.

При более прогрессивном одностадийном способе, волокна вытягивают из стекломассы, поступающей в выработку сразу из стекловаренной печи, питаемой шихтой, т.е. исключается промежуточная стадия выработки эрклеза и стеклянных шариков, при этом расход энергии сокращается практически в два раза. Вместо нее осуществляется операция распределения потока стекла в распределителе стеклоплавильной печи по отдельным фильерным питателям. Одностадийный метод получения стекловолокна используется на предприятиях ОАО «Сен-Гобен Ветротекс Стекловолокно», ОАО «Стеклонит», ООО «УРСА Серпухов» и ООО «Сен-Гобен Изовер Егорьевск».

Дополнительная обработка поверхности стекловолокна замасливателями приводит к ее гидрофобизации, снижению поверхностной энергии и электризуемости, снижению коэффициента трения от 0, 7 до 0, 3, увеличению прочности при растяжении на 20-30%. Поверхностные свойства стекловолокна и капиллярная структура изделия определяют малую (0, 2%) гигроскопичность для волокон и повышенную (0, 3-4%) для тканей.

При производстве волокна для нетканых материалов операции соединения волокон в нить, раскладки или приема волокна или нити модернизируются в зависимости от вида и назначения материала.

Изделия из стекловолокна хуже работают при многократном истирании и изгибе, однако, стойкость к такому обращению повышается путем пропитки стекловолокна лаками и смолами. На 20-25% повышает прочность склеивание волокон в нити, а пропитка стекловолокнистых материалов лаками увеличивает прочность на 80-100%. При погружении стекловолокна в воду прочность снижается, но после высушивания восстанавливается полностью. При длительном действии деформирующего усилия у стекловолокон развивается упругое последствие. Влага также снижает сопротивление стекловолокна трению и изгибу. В сухом воздухе прочность стекловолокна резко повышается. Аналогично действию сухого воздуха смачивание стекловолокон неполярной углеводородной жидкостью – оно дает наибольшее значение прочности. При нагревании стекловолокна до 250-300°С его прочность сохраняется, в то время как органические волокна в условиях таких температур полностью разрушаются.

Значительное влияние на прочность стекловолокон, подвергнутых термической обработке, оказывает состав стекла. Волокна из натрийкальцийсиликатного и боратного стекол теряют свою прочность при термической обработке, начиная уже с 100-200°С. Волокна из кварцевого, кремнеземного и каолинового стекла теряют прочность на 50% при нагреве до 1000°С и последующем охлаждении.

Прочность стекловолокон в различных агрессивных средах (водяной пар высокого давления, горячая вода, щелочи, кислоты) также зависит от химического состава стекла. Самой высокой прочностью и стойкостью к горячей воде и пару обладают стекловолокна из бесщелочного алюмоборосиликатного и магнийалюмосиликатного стекла.

Физико-механические свойства стекловолокна

Механические свойства волокон представлены в таблицах 1.1, 1.2.

Таблица 1.1 - Механические свойства волокон [2]

Марка стекла Плотность ρ, 10− 3 кг/м3 Модуль упругости Е, ГПа Средняя прочность на базе 10 мм, ГПа Предельная деформация ε, %
Высокомодульное 2, 58   4, 20 4, 8
ВМ-1 2, 58   4, 20 4, 8
ВМП 2, 46   4, 20 4, 8
УП-68 2, 40   4, 20 4, 8
УП-73 2, 56   2, 00 3.6

 

Таблица Г.1.2 - Механические свойства стекловолокон [2]

Волокно Плотность, 103·кг·м− 3 Модуль растяжения, ГПа Предел прочности при растяжении, ГПа
E-стекло 2, 5   2, 5
S-стекло 2, 5   4, 6
Кремнезем 2, 5   5, 9

 

Свойства высокомодульных волокон и однонаправленных эпоксидных композиционных материалов из них представлены в таблице 1.3.

Таблица1.3 - Свойства высокомодульных волокон и однонаправленных эпоксидных композиционных материалов [2]

Тип волокон Марка волокна Свойства волокон длиной 10 мм Свойства композиционных материалов*
σ в E σ в E σ в / (pg), км
ГПа ГПа ГПа ГПа
Стеклянные ВМ-1 3, 82 102, 9 2, 01 69, 1  
ВМП 4, 61 93, 3 2, 35 64, 7  
М-11 4, 61 107, 9 2, 15 72, 6  
Борные БН (сорт 2) 2, 75 392, 2 1, 37 225, 5  
БН (сорт 1) 3, 14 382, 4 1, 72 274, 6  
Борофил (США) 2, 75 382, 4 1, 57 225, 5  
Органические СВМ 2, 75 117, 7 1, 47 58, 5  
Кевлар-49 (США) 2, 75 130, 4 1, 37 80, 4  

*Объемная доля наполнителя 60 %.

 

На предел прочности на растяжение стекол влияют микроскопические дефекты и царапины на поверхности, для конструктивных целей в основном применяют стекло с прочностью на растяжение 50 МПа. Стекла имеют Модуль Юнга около 70 ГПа.

Применение стекловолокна

Основная область применения стекловолокна и стеклотекстильных материалов — использование в качестве армирующих элементов стеклопластиков и композитов. Также стеклоткани могут самостоятельно использоваться в качестве конструкционных и отделочных материалов. В этом случае они зачастую подвергаются той или иной форме отделки, главным образом - пропитке связующим (латекс, полиуретан, крахмалы, смолы и прочие полимеры) [2].

Стекловолокно выпускается в рулонах и в виде плит. Плиты из стекловолокна отличаются повышенной жесткостью и выдерживают высокие нагрузки. Для повышения показателей по ветрозащите плиты повышенной жесткости отделывают стекловойлоком.

В большинстве случаев стекловолокнистые плиты применяют для изоляции стен под штукатурные работы в вентиляционных фасадах зданий. На сегодняшний день несколько российский производителей плит повышенной жесткости получили сертификаты пожарной безопасности, которые позволяют использовать плиты из стекловолокна для проведения работ по увеличению огнестойкости металлических конструкций.

Из-за небольшой плотности и значительного количества, содержащегося в нем воздуха, изделия из стекловолокна хорошо сберегают тепло, сохраняя эту способность в течение длительного периода. Легкость, мягкость и эластичность стекловолокна позволяют использовать его для отделки неровных поверхностей, облицовывая конструкции любой формы, не зависимо от конфигурации. Стекловолокно также имеет способность сохранять форму, выдерживать старение и деформации.

Высокие звукоизоляционные свойства стекловолокна, химическая стойкость, отсутствие коррозионных агентов, не гигроскопичность и негорючесть расширяют сферу применения стекловолокнистых изделий.

Изделия из стекловолокна используются в системах наружного утепления, в вентилируемых фасадах зданий для теплоизоляции, для повышения огнестойкости несущих металлических конструкций гражданских и промышленных сооружений.

Стекловолокно входит в структуру гибкой черепицы в качестве несущей арматуры, обеспечивающей изделиям высокую механическую прочность, превосходящую требования международных стандартов качества. В процессе производства стекловолокно пропитывается битумом, чтобы не допустить присутствия влаги в готовом изделии.

Стекловолокно используется так же в стоматологии в составе керамической системы, особенностью которой является возможность химической связи волокон материала с композитами и пластмассами. В качестве арматуры используется стекловолокно, в качестве основы – неорганическая матрица.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.