Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод обернених різниць Тіле. Нехай дійсна функція f(x) неперервна на проміжку [a,b] та визначена своїми значеннями в точках множини






 

Нехай дійсна функція f(x) неперервна на проміжку [a, b] та визначена своїми значеннями в точках множини

Х={x0, x1, …, xn}, де Х Ì [a, b].

Потрібно знайти значення функції в точці х, яка відмінна від заданих. Виходячи з деяких додаткових міркувань, наближаючу функцію будемо шукати у вигляді

f(x)» g(x, ), де – деякі параметри.

Означення 1. Якщо параметри визначаються з умови рівності значень

, i = 0, 1, …, n

то точки називаються вузлами інтерполяції, а такий спосіб наближення функції називається інтерполяцією або інтерполюванням.

Означення 2. У випадку, коли апроксимуючу функцію вибирають у вигляді лінійної комбінації функцій із заданої сукупності, тобто

(1)

то говорять про лінійну інтерполяцію, а функцію називають узагальненим інтерполяційним многочленом.

Означення 3. Якщо апроксимуюча функція не може бути подана у вигляді (1), то таке наближення називається нелінійною інтерполяцією.

Означення 4. Величина

називається залишковим членом узагальненого інтерполяційного многочлена.

Надалі будемо вважати, що та , коли i¹ j, тобто розглядається така задача інтерполяції, коли всі вузли різні.

Виберемо в – просторі неперервних на функцій, скінчену або злічену сукупність функцій , таких, що довільна скінчена система їх є лінійно незалежною. На практиці найчастіше використовують такі системи функцій:

, , , д

е – деяка числова послідовність.

Коефіцієнти в (1) визначимо з умови, що наближуючий агрегат збігається у вузлах інтерполяції із значенням функції, тобто

, i=0, 1, …, n (2)

З (1) та (2) випливає, що для знаходження коефіцієнтів отримуємо систему лінійних алгебраїчних рівнянь

і якщо

то при довільних значеннях , i=0, 1, …, n система має єдиний розв¢ язок

, (3)

де

(4)

формується з за правилом Крамера.

Означення 5. Система функцій , i=0, 1, …, n називається системою Чебишова порядка n, якщо узагальнений многочлен

,

який має більше ніж n коренів на , тотожньо рівний нулеві, тобто для всіх і=0, 1, …, n.

Теорема 1. Для того, щоб для довільної функції існував узагальнений інтерполяційний многочлен для будь-якого набору вузлів , і=0, 1, …, n, необхідно і досить, щоб була системою функцій Чебишова на . При виконанні цих умов узагальнений інтерполяційний многочлен буде єдиним.

Відомо, що всі три вище наведені сукупності функцій є системами функцій Чебишова на довільному .

Якщо визначник (4) розвити за і-м стовпчиком, то (3) перепишеться у вигляді

де , i, k=0, 1, …, n – відповідні алгебраїчні доповнення, і тоді

Якщо згрупувати подібні члени при однакових значеннях, то отримаємо

(5)

Зауваження 1. Функції не залежать від , є лінійними комбінаціями та повністю визначаються через них та вузли інтерполяції

З (2) випливає, що

(6)

Інтерполяційний многочлен у формі Лагранжа

За візьмемо систему функцій {1, x, x2, …, xn, …}. На довільному відрізку при фіксованому n функції 1, x, x2, …, xn є лінійно незалежні і визначник є визначником Вандермонда. А так як за припущенням xi ¹ xj, то

Із (5) та (6) випливає, що - многочлен n-го степеня, який перетворюється в нуль в точках в x0, x1, …, xi-1, xi+1, …, xn і рівний 1 в точці x0, тобто

і

.

Звідки маємо:

Підставивши значення Фі(х) в (5) отримаємо інтерполяційний многочлен у формі Лагранжа






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.