Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






References. Albiach-Marti, M.R., Mawassi, M., Gowda, S., Satyanarayana, T., Hilf, M.E., Shanker, S., Almira, E.C.






Albiach-Marti, M.R., Mawassi, M., Gowda, S., Satyanarayana, T., Hilf, M.E., Shanker, S., Almira, E.C., Vives, M.C., Lopez, C., Guerri, J., Flores, R., Moreno, P., Garnsey, S.M. and Dawson, W.O. (2000) Sequences of citrus tristeza virus separated in time and space are essentially identical. Journal of Virology 74, 6856–6865.

Bar-Joseph, M., Marcus, R. and Lee, R.F. (1989) The continuous challenge of citrus tristeza virus control.

Annual Review of Phytopathology 27, 291–316.

Baulcombe, D.C. (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8, 1833–1844.

Baulcombe, D. (2002) RNA silencing. Current Biology 12, R82–R84.

Cao, H., Glazebrook, J., Clarke, J.D., Volko, S. and Dong, X. (1997) The Arabidopsis NPR1 gene that con- trols systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57–63.

Cao, H., Li, X. and Dong, X.N. (1998) Generation of broad-spectrum disease resistance by overexpression of

an essential regulatory gene in systemic acquired resistance. Proceedings of the National Academy of Sciences of the USA 95, 6531–6536.

Cevik, B. (2001) Characterization of the RNA-dependent RNA Polymerase Gene of Citrus Tristeza Closterovirus. PhD Thesis. University of Florida, Gainesville, Florida.

Chern, M.S., Fitzgerald, H.A., Yadav, R.C., Canlas, P.E., Dong, X.N. and Ronald, P.C. (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant Journal 27, 101–113.

Delaney, T.P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gutrella, M.,

Kessmann, H., Ward, E. and Ryals, J. (1994) A central role of salicylic acid in plant disease resistance.

Science 266, 1247–1250.

Delledonne, M., Murgia, I., Ederle, D., Sbicego, P.F., Biondani, A., Polverari, A. and Lamb, C. (2002) Reactive oxygen intermediates modulate nitric oxide signaling in the plant hypersensitive disease-resist- ance response. Plant Physiology and Biochemistry 40, 605–610.

Despres, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D. and Fobert, P.R. (2003) The

Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15, 2181–2191.

Dominguez, A., Guerri, J., Cambra, M., Navarro, L., Moreno, P. and Peñ a, L. (2000) Effi cient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Reports 19, 427–433.

Dominguez, A., Hermoso de Mendoza, A., Guerri, J., Cambra, M., Navarro, L. and Peñ a, L. (2002) Pathogen- derived resistance to Citrus tristeza virus (CTV) in transgenic Mexican lime (Citrus aurantifolia (Christ.) Swing) plants expressing its p25 coat protein gene. Molecular Breeding 10, 1–10.

Dougherty, W.G., Lindbo, J.A., Smith, H.A., Park, T.D., Swaney, S. and Proebsting, W.L. (1994) RNA-medi- ated virus resistance in transgenic plants: exploitation of a cellular pathway possibly involved in RNA degradation. Molecular Plant-Microbe Interactions 7, 544–552.

Durrant, E.E. and Dong, X. (2004) Systemic acquired resistance. Annual Review of Phytopathology 42, 185–209.

Ekengren, S.K., Liu, Y., Schiff, M., Dinesh-Kumar, S.P. and Martin, G.B. (2003) Two MAPK cascades, NPR1 and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant Journal 36, 905–917.

Fagard, M. and Vaucheret, H. (2000) (Trans)gene silencing in plants: how many mechanisms? Annual Review of Plant Physiology and Plant Molecular Biology 51, 167–194.

Fagoaga, C., Roodrigo, I., Conejero, V., Hinarejos, C., Tuset, J.J., Arnau, J., Pina, J.A., Navarro, L. and Pena,

L. (2001) Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Molecular Breeding 7, 175–185.

Fan, W.H. and Dong, X.N. (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14, 1377–1389.

Febres, V.J., Ashoulin, L., Mawassi, M., Frank, A., Bar-Joseph, M., Manjunath, K.L., Lee, R.F. and Niblett, C.L. (1996) The p27 protein is present at one end of citrus tristeza virus particles. Phytopathology 86, 1331–1335.

Febres, V.J., Niblett, C.L., Lee, R.F. and Moore, G.A. (2003) Characterization of grapefruit plants (Citrus par- adisi Macf.) transformed with citrus tristeza closterovirus genes. Plant Cell Reports 21, 421–428.


 

 

Friedrich, L., Lawton, K., Dietrich, R., Willits, M., Cade, R. and Ryals, J. (2001) NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Molecular Plant-Microbe Interactions 14, 1114–1124.

Frye, C.A., Tang, D.Z. and Innes, R.W. (2001) Negative regulation of defense responses in plants by a con-

served MAPKK kinase. Proceedings of the National Academy of Sciences of the USA 98, 373–378.

Garnsey, S.M. and Cambra, M. (1991) Enzyme linked immunosorbent assay for citrus pathogens. In: Roistacher, C.N. (ed.) Graft-transmissible Diseases of Citrus: Handbook for Detection and Diagnosis. IOCV, FAO, Rome, pp. 193–216.

Gerlach, W.L., Llewellyn, D. and Haseloff, J. (1987) Construction of a plant disease resistance gene using satellite RNA of Tobacco ringspot virus. Nature 328, 802–805.

Ghorbel, R., Dominguez, A., Navarro, L. and Peñ a, L. (2000) High effi ciency genetic transformation of sour

orange (Citrus aurantium) and production of transgenic trees containing the coat protein gene of citrus tristeza virus. Tree Physiology 20, 1183–1189.

Ghorbel, R., Ló pez, C., Fagoaga, C., Moreno, P., Navarro, L., Flores, R. and Peñ a, L. (2001) Transgenic citrus plants expressing the citrus tristeza virus p23 protein exhibit viral-like symptoms. Molecular Plant Pathology 2, 27–36.

Glazebrook, J., Chen, W.J., Estes, B., Chang, H.S., Nawrath, C., Metraux, J.P., Zhu, T. and Katagiri, F. (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant Journal 34. 217–228.

Gowda, S., Satyanarayana, T., Davis, C.L., Navas-Castillo, J., Albiach-Marti, M.R., Mawassi, M., Valkov, N.,

Bar-Joseph, M., Moreno, P. and Dawson, W.O. (2000) The p20 gene product of Citrus tristeza virus accumulates in the amorphous inclusion bodies. Virology 274, 246–254.

Gutierrez, M.A., Luth, D. and Moore, G.A. (1997) Factors affecting Agrobacterium -mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Reports 16, 745–753.

Hamilton, A.J. and Baulcombe, D.C. (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952.

Hamilton, A., Voinnet, O., Chappell, L. and Baulcombe, D. (2002) Two classes of short interfering RNA in

RNA silencing. EMBO Journal 21, 4671–4679.

Hammond, J. (1999) Overview: the many uses and applications of transgenic plants. Current Topics in Microbiolocial Immunology 240, 1–19.

Hammond, S.M., Bernstein, E., Beach, D. and Hannon, G.J. (2000) An RNA-directed nuclease mediates post- transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.

Harrison, B.D., Mayo, M.A. and Baulcombe, D.C. (1987) Virus resistance in transgenic plants that express

Cucumber mosaic virus satellite RNA. Nature 328, 799–802.

Johnson, C., Boden, E. and Arias, J. (2003) Salicylic acid and NPR1 induce the recruitment of trans-activat- ing TGA factors to a defense gene promoter in Arabidopsis. Plant Cell 15, 1846–1858.

Karasev, A.V., Boyko, V.P., Gowda, S., Nikolaeva, O.V., Hilf, M.E., Koonin, E.V., Niblett, C.L., Cline, K.,

Gumpf, D.J. and Lee, R.F. (1995) Complete sequence of the citrus tristeza virus RNA genome. Virology

208, 511–520.

Kim, J.A., Agrawal, G.K., Rakwal, R., Han, K., Kim, K., Yun, C.H., Heo, S.G., Park, S.Y., Lee, Y.H. and Jwa,

N.S. (2003) Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signalling pathways and development. Biochemical and Biophysical Research Communications 300, 868–876.

Kinkema, M., Fan, W.H. and Dong, X.N. (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12, 2339–2350.

Lahaye, T. (2002) The Arabidopsis RRS1-R disease resistance gene – uncovering the plant’s nucleus as the

new battlefi eld of plant defense? Trends in Plant Science 7, 425–427.

Lecomme, C., Hrubikova, K. and Hein, I. (2003) Enhancement of virus-induced gene silencing through viral- based production of inverted repeats. Plant Journal 34, 543–553.

Lindbo, J.A., Silva-Rosales, L., Proebsting, W.M. and Dougherty, W.G. (1993) Induction of a highly specifi c

antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance.

Plant Cell 5, 1749–1759.

Liu, Y.L., Schiff, M., Marathe, R. and Dinesh-Kumar, S.P. (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant Journal 30, 415–429.

Liu, Y., Burch-Smith, T., Schiff, M., Feng, S. and Dinesh-Kumar, S.P. (2004) Molecular chaperone Hsp90


 

associates with resistance protein N and its signaling proteins SGT1 and Rar1 an innate immune response in plants. Journal of Biological Chemistry 279, 2101–2108.

Lomonossoff, G.P. (1995) Pathogen-derived resistance to plant-viruses. Annual Review of Phytopathology

33, 323–343.

Lu, R., Folimonov, A., Shintaku, M., Li, W.X., Falk, B.W., Dawson, W.O. and Ding, S.W. (2004) Three dis- tinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proceedings of the National Academy of Sciences of the USA 101, 15742–15747

Luth, D. and Moore, G. (1999) Transgenic grapefruit plants obtained by Agrobacterium tumefaciens -medi- ated transformation. Plant Cell Tissue and Organ Culture 57, 219–222.

Ma, C.L. and Mitra, A. (2002) Intrinsic direct repeats generate consistent post-transcriptional gene silencing in tobacco. Plant Journal 31, 37–49.

Martin, G.B., Bogdanove, A.J. and Sessa, G. (2003) Understanding the functions of plant disease resistance

proteins. Annual Review of Plant Biology 54, 23–61.

Mauch-Mani, B. and Slusarenko, A.J. (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8, 203–212.

McDowell, J.M. and Dangl, J.L. (2000) Signal transduction in the plant immune response. Trends in Biochemical Sciences 25, 79–82.

Mawassi, M., Mietkiewska, E., Gofman, R., Yang, G. and Bar-Joseph, M. (1996) Unusual sequence relation- ships between two isolates of citrus tristeza virus. Journal of General Virology 77, 2359–2364.

Mawassi, M,, Satyanarayana, T., Albiach-Marti, M.R., Gowda, S., Ayllon, M.A., Robertson, C. and Dawson,

W.O. (2000) The fi tness of citrus tristeza virus defective RNAs is affected by the lengths of their 5¢ - and

3¢ -termini and by the coding capacity. Virology 275, 42–56.

Mou, Z., Fan, W.H. and Dong, X.N. (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935–944.

Moore, G.A., Jacono, C.C., Neidigh, J.L., Lawrence, S.D. and Cline, K. (1992) Agrobacterium -mediated trans- formation of citrus stem segments and regeneration of transgenic plants. Plant Cell Reports 11, 238–242. Muller, G.W. and Garnsey, S.M. (1984) Susceptibility of citrus varieties, species, citrus relatives, and non-

Rutaceous plants to slash-cut mechanical inoculation with citrus tristeza virus (CTV). In: Garnsey, S.M., Timmer, L.W. and Dodds, J.A. (eds) Proceedings of the Ninth Conference IOCV. IOCV, Riverside, California, pp. 33–40.

Nelson, R.E., Powell Abel, P. and Beachy, R.N. (1987) Lesions and virus accumulation in inoculated trans- genic tobacco plants expressing the coat protein gene of tobacco mosaic virus. Virology 158, 126–132. Park, W., Li, J.J., Song, R.T., Messing, J. and Chen, X.M. (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current Biology 12,

1484–1495.

Pappu, H.R., Karasev, A.V., Anderson, E.J., Pappu, S.S., Hilf, M.E., Febres, V.J., Eckloff, R.M., McCaffery, M., Boyko, V. and Gowda, S. (1994) Nucleotide sequence and organization of eight 3¢ open reading frames of the citrus tristeza closterovirus genome. Virology 199, 35–46.

Peck, S. (2003) Early phosphorylation events in biotic stress. Current Opinion in Plant Biology 6, 334–338.

Permar, T.A., Garnsey, S.M., Gumpf, D.J. and Lee, R.F. (1990) A monoclonal-antibody that discriminates strains of citrus tristeza virus. Phytopathology 80, 224–228.

Pieterse, C.M.J. and van Loon, L.C. (1999) Salicylic acid-independent plant defence pathways. Trends in Plant Science 4, 52–58.

Powell, P.A., Sanders, P.R., Tumer, N. and Beachy, R.N. (1990) Protection against tobacco mosaic virus infection in transgenic plants requires accumulation of capsid protein rather than coat protein RNA sequences. Virology 175, 124–130.

Powell-Abel, P.A., Nelson, R.S., Barun De, Hoffmann, N., Rogers, S.G., Fraley, R.T. and Beachy, R.N. (1986)

Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738–743.

Quirino, B.F. and Bent, A.F. (2003) Deciphering host resistance and pathogen virulence: the

Arabidopsis / Pseudomonas interaction as a model. Molecular Plant Pathology 4, 517–530.

Rose, T.M., Henikoff, J.G. and Henikoff, S. (2003) CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucleic Acids Research 31, 3763–3766.

Rovere, C.V., del Vasm M. and Hopp, H.E. (2002) RNA-mediated virus resistance. Current Opinion in Biotechnology 13, 167–172.


 

 

Satyanarayana, T., Gowda, S., Ayllon, M.A., Albiach-Marti, M.R., Rabindran, S. and Dawson, W.O. (2002) The p23 protein of citrus tristeza virus controls asymmetrical RNA accumulation. Journal of Virology 76, 473–83.

Sanford, J.C. and Johnston, S.A. (1985) The concept of parasite-derived resistance – deriving resistance genes from the parasites own genome. Journal of Theoretical Biology 113, 395–405.

Shah, J., Kachroo, P. and Klessig, D.F. (1999) The Arabidopsis ssi1 mutation restores pathogenesis-related

gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. Plant Cell 11, 191–206.

Shirano, Y., Kachroo, P., Shah, J. and Klessig, D.F. (2002) A gain-of-function mutation in an Arabidopsis Toll interleukin-1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14, 3149–3162.

Smith, N., Singh, S., Wang, M.B., Stoutjesdijk, P., Green, A. and Waterhouse, P.M. (2000) Total silencing by

intron-spliced hairpin RNAs. Nature 407, 319–320.

Spoel, S.H., Koornneef, A., Claessens, S.M.C., Korzelius, J.P., Van Pelt, J.A., Mueller, M.J., Buchala, A.J., Metraux, J.P., Brown, R., Kazan, K., Van Loon, L.C., Dong, X. and Pieterse, C.M. (2003) NPR1 modu- lates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel func- tion in the cytosol. Plant Cell 15, 760–770.

Tang, D.Z. and Innes, R.W. (2002) Overexpression of a kinase-defi cient form of the EDR1 gene enhances

powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant Journal 32, 975–983.

Tang, G.L., Reinhart, B.J., Bartel, D.P. and Zamore, P.D. (2003) A biochemical framework for RNA silencing in plants. Genes and Development 17, 49–63.

Tchurikov, N.A., Chistyakova, L.G., Zavilgelsky, G.B., Manukhov, I.V., Chernov, B.K. and Golova, Y.B.

(2000) Gene-specifi c silencing by expression of parallel complementary RNA in Escherichia coli. Journal of Biological Chemistry 275, 26523–26529.

Tenllado, F., Llave, C. and Diaz-Ruiz, J.R (2004) RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Research 102, 85–96.

Thordal-Christensen, H. (2003) Fresh insights into processes of nonhost resistance. Current Opinion in Plant Biology 6, 351–357.

Uquillas, C., Letelier, I., Blanco, F., Jordana, X. and Holuigue, L. (2004) NPR1-independent activation of immediate early salicylic acid-responsive genes in Arabidopsis. Molecular Plant-Microbe Interactions 17, 34–42.

Vives, M.C., Rubio, L., Lopez, C., Navas-Castillo, J., Albiach-Marti, M.R., Dawson, W.O., Guerri, J., Flores,

R. and Moreno, P. (1999) The complete genome sequence of the major component of a mild citrus tris- teza virus isolate. Journal of General Virology 80, 811–816.

Voinnet, O. (2002) RNA silencing: small RNAs as ubiquitous regulators of gene expression. Current Opinion in Plant Biology 5, 444–451.

Wang, M.B., Abbott, D.C. and Waterhouse, P.M. (2000) A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Molecular Plant Pathology 1, 347–356.

Wassenegger, M. (2002a) Gene silencing. International Review of Cytology 219, 61–113. Wassenegger, M. (2002b) Gene silencing-based disease resistance. Transgenic Research 11, 639–653.

Waterhouse, P.M., Graham, H.W. and Wang, M.B. (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences of the USA 95, 13959–13964.

Waterhouse, P.M., Wang, M.B. and Lough, T. (2001) Gene silencing as an adaptive defence against viruses.

Nature 411, 834–842.

Whitham, S.A., Quan, S., Chang, H.S., Cooper, B., Estes, B., Zhu, T., Wang, X. and Hou, Y.M. (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant Journal 33, 271–283.

Wisniewski, L.A., Powell, P.A., Nelson, R.S. and Beachy, R.N. (1990) Local and systemic movement of tobacco mosaic virus (TMV) in tobacco plants that express the TMV coat protein gene. Plant Cell 2, 559–567.

Xiao, S., Brown, S., Patrick, E., Brearley, C. and Turner, J.G. (2003) Enhanced transcription of the Arabidopsis disease resistance genes ROW8.1 and RPW8.2 via salicylic acid-dependent amplifi cation circuit is required for hypersensitive response. Plant Cell 15, 33–45.


 

Yang, Z.N., Mathews, D.M., Dodds, J.A. and Mirkov, T.E. (1999) Molecular characterization of an isolate of citrus tristeza virus that causes severe symptoms in sweet orange. Virus Genes 19, 131–142.

Yu, D.Q., Chen, C.H. and Chen, Z.X. (2001) Evidence for an important role of WRKY DNA binding proteins

in the regulation of NPR1 gene express ion. Plant Cell 13, 1527–1539.

Yu, D., Fan, B., MacFarlane, S.A. and Chen, Z. (2003) Analysis of the involvement of an inducible Arabidopsis RNA-dependent RNA polymerase in antiviraldefense. Molecular Plant-Microbe Interactions 16, 206–216.

Zaccomer, B., Cellier, F., Boyer, J.C., Haenni, A.L. and Tepfer, M. (1993) Transgenic plants that express genes including the 3¢ untranslated region of the Turnip yellow mosaic virus (TYMV) are partially protected against TYMV infection. Gene 136, 87–94.

Zhu, M., Shao, F., Innes, R.W., Dixon, J.E. and Xu, Z. (2004) The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site. Proceedings of the National Academy of Sciences of the USA 101, 302–307.


 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.