Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Синаптическая передача возбуждения






Вариант1: Синаптическая передача — распространение возбуждения через синапс. В пресинаптическом окончании медиатор накапливается в синаптических пузырьках (везикулах). Возбуждение, приходящее по пре-синаптической терминали, деполяризует пресинаптическую мембрану, пузырьки подходят к синаптической мембране, и медиатор выходит в синаптическую щель. Затем он диффундирует к постсинаптической мембране, действует на ее рецепторы, вследствие чего изменяется ее проницаемость, на ней возникает возбуждающий (ВПСП) или тормозной потенциал (ТПСП). Суммация возбуждающих и тормозных потенциалов определяет возникновение в клетке деполяризации или гиперполяризации. При клеточной деполяризации возникает потенциал действия, при гиперполяризации клетка находится в тормозном состоянии.

Как только медиатор перестает действовать на ионный канал начинается процесс терминации синаптической передачи:

1. разрушение медиатора,

2. разрушение рецептора,

3. медиатор может отделиться и через механизм обратного захвата попасть обратно в везикулу для повторного использования,

4. прекращение выделения медиатора.

 

Медиатор в синаптической щели расщепляется специальными ферментами, и продукты расщепления всасываются вновь в пресинаптическое окончание.

В автономной нервной системе имеется три вида синаптической передачи: электрическая, химическая и смешанная. Химическая осуществляется по определенным закономерностям, среди которых выделяют два принципа. Первый (принцип Дейла) заключается в том, что нейрон со всеми отростками выделяет один медиатор. Как стало теперь известно, наряду с основным в этом нейроне могут присутствовать также другие передатчики и участвующие в их синтезе вещества. Согласно второму принципу, действие каждого медиатора на нейрон или эффектор зависит от природы рецептора постсинаптической мембраны.

Насчитывают более десяти видов нервных клеток, которые продуцируют в качестве основных разные медиаторы: ацетилхолин, норадреналин, серотонин и другие био­генные амины, аминокислоты, АТФ. В зависимости от того, какой основной медиатор выделяется окончаниями аксонов автономных нейронов, эти клетки принято называть холинергическими, адренергическими, серотоиинергическими, пуринергическими и т. д. ней­ронами.

 

Каждый из медиаторов выполняет передаточную функцию, как правило, в определенных звеньях дуги автономного рефлекса. Так, ацетилхолин выделяется в окончаниях всех преганглионарных симпатических и парасимпатических нейронов, а также большинства постганглионарных парасимпатических оконча­ний. Кроме того, часть постганглионарных симпатических волокон, иннервирующих потовые железы и, по-видимому, вазодилататоры скелетных мышц, также осуществляют передачу с помощью ацетилхолина. В свою очередь норадреналин является медиатором в постганглионарных симпатических окончаниях (за исключением нервов потовых желез и симпатических вазодилататоров) — сосудов сердца, печени, селезенки.

 

Медиатор, освобождающийся в пресинаптических терминалах под влиянием приходящих нервных импульсов, взаимодействует со специфическим белком-рецептором постсинаптической мембраны и об­разует с ним комплексное соединение. Белок, с которым взаимо­действует ацетилхолин, носит название холинорецептора, адрена­лин или норадреналин — адренорецептора и т. д. Местом локализации рецепторов различных медиаторов является не только постсинаптическая мембрана. Обнаружено существование и специ­альных пресинаптических рецепторов, которые участвуют в меха­низме обратной связи регуляции медиаторного процесса в синапсе.

Вариант 2: Впервые гипотезу о химической передаче сигнала между нейронами с участием особых веществ-посредников - нейромедиаторов - выдвинул английский ученый Т. Эллиот (T. Elliott) еще в 1904 году. Затем благодаря работам австрийского физиолога Отто Леви (Otto Loewi), английского физиолога Генри Дейла (Henry Dale) и русского физиолога Александра Самойлова эта идея нашла экспериментальное подтверждение. В 1936 году Леви и Дейл были удостоены Нобелевской премии по физиологии и медицине " за исследование химической природы передачи нервного импульса".

В отличие от других клеток организма нейроны обладают длинными отростками (аксонами и дендритами), позволяющими им контактировать между собой и с окружающими клетками (у млекопитающих длина аксонов может быть более метра). Концентрация некоторых ионов (в первую очередь ионов калия, натрия, кальция и хлора) внутри отростков и в окружающей их среде различна. За счет этого появляется разность потенциалов по отношению к мембране аксона. Ионы могут проникать внутрь отростков и выходить из них через специальные белковые ионные каналы, пронизывающие внешние стенки аксонов. Таким образом, вдоль аксона одного нейрона нервный импульс передается как электрический сигнал: в виде изменения разности потенциалов (сами ионы вдоль отростка не перемещаются, а служат только для создания электрического напряжения).

Передача сигнала между нейронами осуществляется с помощью синаптических контактов (синапсов). Синапс представляет собой место взаимодействия окончаний отростков через небольшой зазор (синаптическую щель). Как только электрический импульс достигает синапса, в аксон передающего нейрона (пресинаптического) устремляются ионы кальция, запускающие выделение нейромедиатора в синаптическую щель. Затем молекулы медиатора диффундируют к отростку принимающего сигнал нейрона (постсинаптического). На принимающей стороне находятся белковые рецепторы для молекул медиатора, которые одновременно являются ионными каналами, впускающими ионы внутрь отростка. Присоединение молекул медиатора к рецепторам-каналам постсинаптического нейрона открывает их для ионов, вследствие чего происходит изменение электрического потенциала, и сигнал перемещается дальше уже снова в виде электрического импульса. Описанный механизм характерен для прямой (или быстрой) синаптической передачи, а соответствующее действие медиаторов было названо ионотропным. Быстрая передача призвана обеспечивать немедленную реакцию нервной системы на внешние воздействия. В организме человека быстрая синаптическая передача отвечает за регулирование восприятия, движений, речи.

В начале 1970-х годов было показано, что некоторые нейромедиаторы, такие как серотонин, норадреналин, дофамин, действуют в нервной системе по механизму, совершенно отличному от быстрой синаптической передачи. Американский биохимик Пол Грингард (Paul Greengard) установил, что эти медиаторы не просто изменяют мембранный потенциал, а на глубоком уровне влияют на обмен веществ в самом нейроне, приводя к длительным изменениям в способности синапсов проводить сигналы. Это явление было названо непрямой (или медленной) синаптической передачей, ответственной за такие сложные свойства нервной системы, как эмоции и память. Эффекты, связанные с медленной передачей, получили название метаботропные. Позднее американский физиолог Эрик Кендел (Eric Kandel) установил ключевые стадии формирования кратковременной и долговременной памяти по механизму медленной синаптической передачи. Оказалось, что при относительно слабом входящем стимуле метаботропные медиаторы, проникая в постсинаптический нейрон, вызывают изменение структуры белковых ионных каналов, тем самым изменяя восприимчивость нейронов к импульсам и эффективность передачи сигнала синапсами. Эти структурные изменения могут сохраняться довольно долго (от нескольких минут до нескольких дней). Так формируется кратковременная память. По прошествии некоторого времени каналы могут снова принять первоначальную форму, и слабый стимул, вызвавший их, будет " забыт". Если стимул сильный, то нейромедиатор через каскад биохимических реакций дает сигнал ядру нейрона запустить синтез новых белков, под действием которых может меняться структура самого синапса (например, увеличивается площадь синаптического контакта) или начаться рост новых отростков для формирования дополнительных межнейронных связей. Такие изменения структуры могут сохраняться до конца жизни организма, являясь материальным носителем его долговременной памяти. Медленная синаптическая передача выполняет модулирующую функцию, она прокладывает новые пути для распространения сигналов быстрой передачи.

Некоторые из них остаются " тропинками", другие превращаются в " скоростные шоссе". В 2000 году Грингард и Кендел совместно со шведским фармакологом Арвидом Карлсоном (Arvid Carlsson) были удостоены Нобелевской премии по физиологии и медицине в первую очередь за открытие и исследование медленной синаптической передачи.

Вопрос 14. Синаптические рецепторы.

 

Синаптические рецепторы весьма многообразны по структурной организации и молекулярному воплощению, но все они имеют по крайней мере три последовательных функциональных элемента: узнающий участок, элемент связи и преобразователь. Узнающий участок призван выделить «свой» медиатор и отреагировать на его появление. Преобразователь, или исполнительный элемент, непосредственно реализует активацию рецептора и запускает потенциал действия.

По расположению: пресинаптические и постсинаптические рецепторы.

Пресинаптические рецепторы реализуют механизм обратного захвата. Если медиатора выделено слишком много, то он появляется в синаптической щели. Рецепторы это улавливают и прекращают передачу медиатора, а лишнее количество захватывается обратно в сому.

По структуре: ионотропные (быстрые) и метаботропные (медленные).

Ионотропные рецепторы:

Связаны с каналами для мелких ионов (натрий, калий, хлор);

Непосредственно контролируют открытие ионных каналов;

Генерируют очень быстрый ответ мембраны нейрона в виде изменения в ней ионных токов для Na, K, Ca, Cl.

Метаботропные рецепторы:

Действуют через систему вторичных посредников и запускают каскад реакций внутри клетки;

Активизируют внутриклеточные процессы с помощью вторичных посредников;

Генерируют медленные метаболические ответы.

 

Холинорецепторы – рецепторы, взаимодействующие с ацетилхолином. Бывают трёх типов:

А) Мускариновые – возбуждаемые мускарином (возбуждение)

Б) Никотиновые – возбуждаемые никотином (эйфория)

В) Мускарино-никотиновые – постсинаптические рецепторы нервно-мышечных тканей.

Вопрос 15. Нейромедиаторы и нейромодуляторы.

Нейромедиаторы (нейротрансмиттеры) — биологически активные химические вещества, посредством которых осуществляется передача электрического импульса с нервной клетки через синаптическое пространство. Нейромедиаторы характеризуются способностью реагировать со специфическими белковыми рецепторами клеточной мембраны, инициируя цепь биохимических реакций, вызывающих изменение трансмембранного тока ионов, что приводит к деполяризации мембраны и возникновению потенциала действия.

Нейромодуляторы - химические вещества, ​ которые действуют как нейромедиаторы, но не ограничиваются ​ синаптической щелью, а рассредотачиваются повсюду, модулируя действие ​ многих нейронов в определенной области.

Ацетилхолин.

По химическому строению ацетилхолин представляет собой соединение двух молекул — азотсодержащего холина и остатка уксусной кислоты:

Ацетилхолин в качестве медиатора работает в трех функциональных блоках нервной системы: в нервно-мышечных синапсах, периферической части вегетативной нервной системы и некоторых областях ЦНС.

Ацетилхолин является медиатором мотонейронов нервной системы, которые расположены в передних рогах серого вещества спинного мозга и двигательных ядрах черепных нервов. Их аксоны направляются к скелетным мышцам и, разветвляясь, образуют нервно-мышечные синапсы.

В ЦНС ацетилхолин вырабатывается частью нейронов ретикулярных ядер моста и интернейронами полосатого тела базальных ганглиев и некоторых других локальных зон. Рассматривается роль этого медиатора в регуляции уровня бодрствования, а также в системах памяти, двигательных системах. Доказана эффективность применения антагонистов ацетилхолина при ряде двигательных нарушений.

Выделяясь из пресинаптического окончания, ацетилхолин действует на постсинаптические рецепторы. Эти рецепторы неоднородны и различаются локализацией и рядом свойств. Выделено два типа рецепторов: первый, помимо ацетилхолина, возбуждается под действием алкалоида табака никотина (никотиновые рецепторы), второй тип активируется ацетилхолином и токсином мухомора мускарином (мускариновые рецепторы).

В периферической НС ацетилхолин является основным медиатором нервно-мышечного синапса, действуя на никотиновые холинорецепторы.

В вегетативной нервной системе ацетилхолин осуществляет передачу в симпатических и парасимпатических ганглиях (выделяется из окончаний преганлионарных волокон), а также влияет на работу внутренних органов, выделяясь из периферических окончаний парасимпатических нервов (мускариновые рецепторы).

Биогенные амины (моноамины).

Биогенные амины – это биологически активные вещества, оказывающие воздействие на процессы торможения и возбуждения в коре головного мозга и подкорковых центрах, вызывающие изменения артериального давления расширением или ужением сосудов и другие изменения в организме. Большинство из моноаминов действуют через метаботропные рецепторы. Синтезируются в головном мозге из разных аминокислот (катехоламины из тирозина, а индоламины из триптофана). Моноамины - самая большая группа медаторов, которая делится на катехоламины и индоламины.

Катехоламины = норадреналин + адреналин + дофамин.

Норадреналин. Образуется в мозговом слое надпочечников и в нервной системе, служит медиатором проведения нервного импульса через синапс, повышает артериальное давление, стимулирует углеводный обмен.

Основной источник адренергических аксонов – голубое пятно и прилежащие участки среднего мозга. Проекции голубого пятна образуют часть восходящей ретикулярной активизирующей системы мозга, направленной из ретикулярной формации в кору больших полушарий. Этот путь регулирует внимание, уровень бодрствования, возбуждение и суточные ритмы.

Много норадреналина в ВНС. Норадреналин также участвует в формировании когнитивных и адаптационных процессов.

Адреналин. Это гормон мозгового слоя надпочечников, выделяющийся в кровь преимущественно при напряжении (стрессе). В качестве медиатора адреналин не встречается, это гормон.

Дофамин. Это нейрогормон и медиатор нервной системы, биохимический предшественник норадреналина и адреналина. Дофаминэнргические нейроны находятся преимущественно в среднем мозге, в т.н. чёрной субстанции и ядре покрышки среднего мозга, а также в гипоталамусе.

В последнее время появляются данные об участии в патогенезе шизофрении нейропептидов, тем более что ест тесная связь между эндорфиновой и дофаминовой системами мозга. У шизофреников количество дофамина выше нормы.

Дофамин вызывает положительные эмоции. Натуральный аналог – пейот.

Индоламины = Серотонин + Гистамин.

Серотонин. Это биологически активное вещество, содержащееся в крови и тканях животных и человека, является медиатором как на периферии, так и в нервных центрах.

Примерно 90% серотонина синтезируется клетками пищеварительного тракта. В ЦНС серотонинэргические нейроны есть в ядрах шва продолговатого мозга, а также в центральном сером цеществе среднего мозга и варолиевом мосту. Эти нейроны иннервируют кору больших полушарий, гиппокамп, бледный шар, миндалину, гипоталамус.
Самая высокая концентрация серотонина – в эпифизе. Там он превращается в мелатонин.

Серотонин участвует в регуляции эмоционального поведения, двигательной активности, пищевого поведения, полового поведения, терморегуляции. С нарушениями в серотонинэргичесой системе связывают развитие алкогольной зависимости, некоторых форм тревожности. Важная роль в осуществлении сложных форм поведения, включая агрессию и формирование социальных отношений в популяции. Антагонист серотонина – ЛСД.

Гистамин. Это гормон и медиатор группы моноаминов, в значительных количествах освобождающийся при аллергических реакция, шоке, ожоге. Вызывает расширение кровеносных сосудов, сокращение гладкой мускулатуры, повышение секреции олвной кислоты в желудке.

Тела гистаминовых нейронов в головном мозге сконцентрированы в гипоталамусе, а их аксоны расходятся почти во все отделы ЦНС.

Блокада гистаминовой системы сопровождается сонливостью. Разблокирование – активностью, агрессией.

Аминокислоты.

Медиаторы-аминокислоты являются самыми распространёнными медиаторами в НС. До 80% нейронов выделяют из своих окончаний аминокислоты в качестве медиаторов.

1. Возбуждающие аминокислоты.

Глутаминовая кислота – основной возбуждающий медиатор в ГМ. Образуется в мозге из глюкозы. Больше всего глутамата в конечном мозге и мозжечке. Принимает участие в процессах памяти, является медиатором сенсорных путей.

Аспаргиновая кислота – возбуждающий медиатор среднего мозга, нижней оливы продолговатого мозга и серого вещества спинного мозга. АК регулирует спинномозговые рефлексы.

Обе возбуждающие аминокислоты участвуют в регуляции состоянии беспокойства.

2. Тормозные аминокислоты.

Гамма-аминомасляная кислота (ГАМК) – образуется в мозге из глутаминовой кислоты. Много ГАМК в коре больших полушарий, в коре мозжечка, в чёрной субстанции среднего мозга, в сетчатке глаза.

Успокаивающий, усыпляющий эффект. Нельзя использовать, т.к. не проходит ГЭБ.

ГАМКа – ионотропные, ГАМКб – метаботропные.

Нарушение ГАМК-эргической системы – эпилепсия, расстройство сна, дисфункции в сердечно-сосудистой системе.

Глицин – тормозной медиатор спинного и в меньшей степени ГМ. Тела синтезирующий глицин нейронов в основном в спинном и продолговатом мозге, в ядрах черепномозговых нервов, в промежуточном мозге. Только один тип рецепторов – ионотропный. Глицин обеспечивает возвратное торможение мотонейронов спинного мозга, уменьшает психомоторную расторможенность.

Пуриновые медиаторы.

Пурины – группа природных азотистых гетероциклических соединений и их производных. В качестве модулятором и в меньшей степени медиаторов встречаются в основном аденозин, а также АТФ(аденозинтрифосфорная кислота). Пурины действуют через особый тип рецепторов – пуриновые, основной из которых – метаботропный А1-рецептор. Рецепторы действуют в периферической НС, в афферентных окончаниях болевых волокон.

Аденозин – нейромодулятор, оказывает в основном тормозное влияние на возбуждающие синапсы.

Физиологическая роль пуринэргической системы в том, что при длительной нагрузке на мозг в нём образуется большое количество АМФ (аденозинмонофосфорной кислоты), которая тормозит работу синапсов через А1-рецепторы, защищая ЦНС в экстремальных условиях. А вещества, блокирующие работу этих рецепторов, способны активизировать НС: кофеин, теофилин, теобромин.

 

Пептидные медиаторы.

Это вещества, состоящие из цепочек аминокислот. Первым из них было открыто вещество Р (от powder — порошок), выделенное из сухого порошка спинного мозга. Его введение в кровь в очень малых дозах вызывает расширение кровеносных сосудов и спазм кишечника.

Наиболее изученной группой пептидных медиаторов считаются опиоидные пептиды. Их название происходит от опиума — субстанции, выделенной из мака и обладающего анальгетическим и эйфорическим действием. Под влиянием опиума по мере увеличения дозы наблюдается обезболивание, успокоение и засыпание. В 1803 г. было выделено основное действующее начало опиума, названное морфином. Показано, что обезболивающие эффекты морфина осуществляются через задние рога спинного мозга, через гипоталамус, где расположен центр положительных эмоций. Засыпание связано с общим торможением стволовых структур. Сверхбольшие дозы морфина могут вызвать остановку дыхания.

Синтез медиаторов-пептидов (в том числе опиоидных) протекает значительно сложнее по сравнению с синтезом медиаторов других групп. В ходе этого процесса рибосомы вначале строят белок-предшественник, а затем особые ферменты вырезают из него необходимые фрагменты, причем один белок может содержать внутри себя несколько медиаторов-пептидов.

Основной механизм действия опиоидов в ЦНС — пресинаптическое торможение выделения медиаторов.

Существуют нейропептиды, избирательно управляющие половым поведением, пищевой мотивацией, терморегуляцией. В целом соединения этой группы образуют сложную иерархическую систему, в которой одни нейропептиды активируют или подавляют высвобождение других нейропептидов. Последние способны воздействовать как на метаболизм нейронов, так и на функционирование «классических» медиаторных систем; при этом сфера влияний конкретного нейропептида часто ограничивается узким кругом эффектов, связанных, например, только с какой-либо одной биологически значимой потребностью или с определенным типом памяти.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.