Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Интерполяция полиномом Лагранжа






При глобальной интерполяции на всем интервале строится единый многочлен. Одной из форм записи интерполяционного многочлена для глобальной интерполяции является многочлен Лагранжа:

Интерполяционный полином Лагранжа n-ой степени есть линейная комбинация базисных полиномов Лагранжа:

  (2.1)

где – базисные многочлены степени n:

  ((2.2)

То есть многочлен Лагранжа:

  (2.3)

Многочлен удовлетворяет условию

Это условие означает, что многочлен равен нулю при каждом кроме , то есть , , … , – корни этого многочлена. Таким образом, степень многочлена равна n и при в сумме обращаются в нуль все слагаемые, кроме слагаемого с номером i=j, равного .

принимает значение 1 в точке и 0 в остальных узлах интерполяции. Следовательно в точке исходный полином принимает значение

(2.4)

Выражение (2.1) применимо как для равноотстоящих, так и для не равноотстоящих узлов.

Многочлен Лагранжа в явном виде содержит значения функций в узлах интерполяции, поэтому он удобен, когда значения функций меняются, а узлы интерполяции неизменны. Число арифметических операции, необходимых для построения многочлена Лагранжа, пропорционально и является наименьшим для всех форм записи. К недостаткам этой формы записи можно отнести то, что с изменением числа узлов приходится все вычисление проводить заново.

2.2. Многочлен Ньютона

Пусть функция g(x) задана с произвольным шагом и точки таблицы значений занумерованы в произвольном порядке.

Многочлен Ньютона во многом опирается на понятие разделенных разностей. Разделенные разности нулевого порядка совпадают со значениями функции в узлах. Разделенные разности первого порядка определяются через разделенные разности нулевого порядка:

  ((2.5)

Разделенные разности второго порядка определяются через разделенные разности первого порядка:

  (2.6)

Разделенные разности k-го порядка определяются через разделенную разность порядка :

  (2.7)

Используя понятие разделенной разности интерполяционный многочлен Ньютона можно записать в следующем виде:

  (2.8)

Для повышения точности интерполяции в сумму могут быть добавлены новые члены, что требует подключения дополнительных узлов. При этом для формулы Ньютона безразлично, в каком порядке подключаются новые узлы, в то время как для многочлена Лагранжа при добавлении новых узлов все расчеты надо производить заново.

Предположим, что необходимо увеличить степень многочлена на единицу, добавив в таблицу еще один узел . Для вычисления достаточно добавить к лишь одно слагаемое .






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.