Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Сопротивление нулевой последовательности трансформаторов






Большое значение имеют соединения обмоток трансформаторов сети и заземление их нейтралей. Чтобы из точки КЗ протекал в данную часть схемы ток нулевой последовательности, необходимо, чтобы у трансформатора имелась заземленная нейтраль. Обмотки, незаземленные и соединенные в треугольник, являются фильтрами нулевой последовательности и не дают возможности соответствующим токам протекать дальше по схеме или в землю.

В приведенном примере трансформатор слева (Т-1) имеет заземленную первичную обмотку и вторичную собранную треугольником. Токи нулевой последовательности достигают трансформатора и стекают на землю через его нейтраль, но не распространяются дальше в остальную часть левой схемы (вторичная обмотка трансформатора собрана треугольником, о ее последствии ниже). Между тем, путь токам справа не ограничивает трансформатор Т-2, т. к. его обмотки со стороны высокого и среднего напряжений имеют заземленную нейтраль, и токи нулевой последовательности продолжают путь в остальную правую часть схемы, но только потому, что там, в системе, есть заземленная нейтраль, показанная на принципиальной схеме соответствующим значком. Если бы этот значок показывал, что нейтраль не заземлена, то схему следовало бы закончить трансформатором.

Отдельно нужно рассмотреть обмотку низкого напряжения трансформатора Т-2. Она собрана в треугольник. Треугольник является фильтром для токов нулевой последовательности: они способны трансформироваться в него, но, протекая через обмотки фаз, замыкаются друг с другом. По этой причине на схеме показан путь для протекания токов через сопротивление низкой обмотки трансформатора на землю, хотя фактически там земли нет.

Вторичная обмотка трансформатора Т-1 также собрана в треугольник. Сопротивление нулевой последовательности, таким образом, складывается из сопротивления первичной обмотки, через которое токи непосредственно стекают в землю и из сопротивления вторичной, собранной в треугольник, в которой они замыкаются сами на себя. В итоге трансформатор в схеме показан своим полным реактивным сопротивлением.

На самом деле существует большое количество вариантов схем замещения трансформаторов в зависимости от схем соединения их обмоток, конструкции и их типа. Практически достаточно знать только приведенные два простых случая, сложные случаи запоминать нет необходимости. Достаточно просто воспользоваться справочной литературой.

Ниже приведены варианты.

Двухобмоточный трансформатор может быть представлен так:

На этих схемах предполагается, что замыкание происходит слева.

Первый вариант представляет собой схему соединения обмоток двухобмоточного трансформатора типа звезда с землей — треугольник. Это есть рассмотренный выше случай.

Однако на схеме указано еще сопротивление намагничивания. Но так как ток намагничивания достаточно мал (составляет около 1% от номинального), то можно считать, что это сопротивление настолько велико, что им можно пренебречь. Тогда трансформатор войдет в схему замещения только одним своим сопротивлением, которое рассчитывается обычной известной формулой.

Второй вариант представляет трансформатор с соединением вторичной обмотки в звезду и даже заземленную, но вот будут протекать токи нулевой последовательности через него или нет, зависит от того, есть или нет заземление нейтралей оборудования в остальной правой части схемы. Если есть, то трансформатор войдет в схему последовательно соединенным одним своим сопротивлением (рассчитанным как и для случая трехфазного КЗ). Если нет, то трансформатор следует представить сопротивлением первичной обмотки и сопротивлением намагничивания. Оно столь велико, что в приближенных расчетах часто принимают равным бесконечности, а значит, токи через трансформатор не текут.

 

 

Билет№3

1. Раскройте содержание следующих терминов: Токовая защита. Схемы токовых защит. Область применения ТЗ и ее оценка.

2. Раскройте содержание следующих терминов: Автоматика ликвидации асинхронного режима (АЛАР).

3. Дайте формулировку определения Возмущения в электроэнергетической системе.

4. Рассмотрите этапы проектирования РЗ и А. Исходные данные для проектирования систем РЗ и А.

5. Раскройте содержание следующих терминов: Векторная диаграмма токов в месте двухфазного короткого замыкания

 

1. Раскройте содержание следующих терминов: Токовая защита. Схемы токовых защит. Область применения ТЗ и ее оценка.

 

ПРИНЦИП ДЕЙСТВИЯ ТОКОВЫХ ЗАШИТ

Одним из признаков возникновения КЗ является увеличение тока в ЛЭП. Этот признак используется для выполнения РЗ, называемых токовыми. Токовые РЗ приходят в действие при увеличении тока в фазах ЛЭП сверх определенного значения. В качестве реле, реагирующих на возрастание тока, служат максимальные токовые реле (см. гл. 2).

Токовые РЗ подразделяются на максимальные токовые РЗ и токовые отсечки. Главное различие между этими РЗ заключается в способе обеспечения селективности.

Селективность действия максимальных токовых РЗ достигается с помощью выдержки времени. Селективность токовых отсечек обеспечивается соответствующим выбором тока срабатывания

Принцип действия и селективности защиты. Максимальные токовые защиты (МТЗ) являются основным видом РЗ для сетей с односторонним питанием. Они устанавливаются в начале каждой ЛЭП со стороны источника питания (рис.4.1, а). Каждая ЛЭП имеет самостоятельную РЗ, отключающую ЛЭП в случае повреждения на ней самой или на шинах питающейся от нее ПС, и резервирующую РЗ соседней ЛЭП.

Измерительная часть МТЗ 1 состоит из измерительных органов ИО (в данном случае токовых реле КА мгновенного действия). В трехфазной схеме ИО предусматриваются на каждой фазе, они питаются вторичными токами соответствующих фаз ТТ, соединенных по схеме звезды.

Логическая часть 2 состоит из логического элемента (ЛЭ), выполняющего функцию ИЛИ (DW), органа времени КТ (обычно одного на три фазы), создающего выдержку времени t, сигнального реле КН.

Исполнительный орган 3, выполняемый посредством выходного промежуточного реле KL, или тиристорной схемы, срабатывая, передает команду на отключение выключателя Q. Исполнительный орган должен обладать мощным выходным сигналом, достаточным для приведения в действие электромагнита отключения (ЭО) YAТ привода выключателя.

Достоинством МТЗ является ее простота, надежность и небольшая стоимость. МТЗ обеспечивает селективность в радиальных сетях с односторонним питанием. К недостаткам МТЗ относятся: большие выдержки времени, особенно вблизи источников питания; недостаточная чувствительность при КЗ в разветвленных сетях с большими токами нагрузки.

МТЗ получила наиболее широкое распространение в радиальных сетях, в сетях 10 кВ и ниже является основной РЗ.

Токовые отсечки являются самой простой РЗ. Быстрота действия в сочетании с простотой схемы составляет важное преимущество этих РЗ. Недостатками отсечек являются: неполный охват защищаемой ЛЭП и непостоянство зоны действия в связи с изменением режима энергосистемы.

Сочетая МТЗ 1 с мгновенной отсечкой 3 и отсечкой с выдержкой времени 2, можно получить трехступенчатую МТЗ, обеспечивающую быстрое отключение повреждений на защищаемой линии W1 и резервирующую РЗ 4 и 5 следующего участка.

 

2. Раскройте содержание следующих терминов: Автоматика ликвидации асинхронного режима (АЛАР).

Автоматика ликвидации асинхронного режима - АЛАР (старое название - автоматика прекращения асинхронного хода - АПАХ) является частью противоаварийной автоматики энергосистем и предназначена для устранения опасных явлений, возникающих в таких системах при нарушении устойчивости параллельной работы агрегатов электростанций, целых электростанций и частей объединенных энергосистем.

Назначение

В энергосистемах генераторы электростанций включены параллельно и в нормальном состоянии ЭДС, вырабатываемая на этих генераторах имеет одинаковую частоту, амплитуду и фазу (все векторы ЭДС вращаются синхронно). Это необходимо для исключения перетоков мощности между генераторами. Кроме того все генераторы являются синхронными машинами и работают в синхронном режиме (скольжение основного магнитного поля S равно нулю, ненулевые значения наблюдаются лишь при пуске и кратковременно в переходных режимах — набросе и сбросе нагрузки).

При дефиците мощности в части энергосистемы или в одной из энергосистем по причине отключения части генераторных мощностей (отключение ЛЭП, по которой передаются значительные мощности извне; аварийный останов генератора или группы генераторов) нагружаются оставшиеся в работе генераторы, частота вращения их понижается и при несвоевременно принятых мерах они переходят в асинхронный режим («вываливание из синхронизма»), при этом скольжение приобретает значительные величины (магнитное поле начинает вращаться относительно ротора машины). Кроме того, начало асинхронного режима может быть спровоцировано глубоким понижением напряжения в системе (например из-за не отключённого во время к.з.).

Для исключения возникновения асинхронного хода на генераторах, возникновения «качаний в сети» и развала всей системы предназначена АЛАР.

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.