Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Оксидоредуктазы.






Поскольку окисление одного вещества (донора электронов и протонов) сопряжено с восстановлением другого соединения (их акцептора), ферменты, катализирующие эти реакции, называют оксидоредуктазами. Все они относятся к I классу ферментов:

Донор (Д) отдает электроны и протоны, акцептор (А) принимает их, а энзим (Е) осуществляет реакцию переноса. Существуют три группы оксидоредуктаз:

а) анаэробные дегидрогеназы передают электроны различным промежуточным акцепторам, но не кислороду;

б) аэробные дегидрогеназы передают электроны различным акцепторам, в том числе кислороду;

в) оксидазы способны передавать электроны только кислороду.

Анаэробные дегидрогеназы. Это двухкомпонентные ферменты, коферментом которых может быть НАД+ (никотинамидадениндинуклеотид):

При окислении субстрата НАД+ превращается в восстановленную форму НАДH, а второй протон субстрата диссоциирует в среду (НАДH+ Н+). К анаэробным НАД-зависимым дегидрогеназам относятся такие ферменты, как алкогольдегидрогеназа, лактатдегидрогеназа, малатдегидрогеназа и др. Коферментом анаэробных дегидрогеназ может быть также НАДФ+ (никотинамидадениндинуклеотидфосфат), содержащий на одну фосфатную группировку больше, чем НАД +. НАДФ- зависимыми дегидрогеназами являются изоцитратдегидрогеназа, глюкозо-6-фосфатдегидрогеназа, 6-фосфоглюконатдегидрогеназа и др.

Субстратная специфичность фермента зависит от его белковой части. Многие НАД- и НАДФ-зависимые дегидрогеназы нуждаются в присутствии ионов двухвалентных металлов. Например, алкогольдегидрогеназа содержит ионы цинка.

Окисленные и восстановленные формы коферментов анаэробных дегидрогеназ могут взаимопревращаться в реакции, катализируемой ферментом НАД(Ф)-трансгидрогеназой:

НАДФH + НАД+ = НАДФ+ + НАДH

Анаэробные дегидрогеназы передают водород, т. е. электроны и протоны, различным промежуточным переносчикам и аэробным дегидрогеназам.

Аэробные дегидрогеназы. Это также двухкомнонентные ферменты, получившие название флавиновых (флавопротеины).

Помимо белков, в их состав входит прочно связанная с ними простетическая группа — рибофлавин (витамин В2).

Различают два кофермента этой группы: флавинмононуклеотид (ФМН), или желтый дыхательный фермент Варбурга, и флавинадениндинуклеотид (ФАД).

ФМН (рибофлавин-5-фосфат) содержит гетероциклическое азотистое основание — диметилизоаллоксазин, спирт рибит (производное рибозы) и фосфат:

В ФАД кроме ФМН имеется еще один нуклеотид — аденозинмонофосфата:

Активной группой в реакции присоединения и отдачи электронов и протонов в ФМН и ФАД служит изоаллоксазин. Взаимодействие с восстановленным переносчиком, например НАДH, происходит следующим образом:

Примером дегидрогеназы, в состав которой входит ФАД, является сукцинатдегидрогеназа. Доноры электронов для аэробных дегидрогеназ — анаэробные дегидрогеназы, а акцепторы — хиноны, цитохромы, кислород.

Цитохромная система. Среди оксидаз очень важную роль играют железосодержащие ферменты и переносчики, относящиеся к цитохромной системе. В нее входят цитохромы " и цитохромоксидаза. Включаясь в определенной последовательности в процесс переноса электронов, они передают их от флавопротеинов на молекулярный кислород.

Все компоненты цитохромной системы содержат железопорфириновую простетическую группу.

При переносе электронов цитохромами железо обратимо окисляется и восстанавливается, отдавая или приобретая электрон и изменяя таким образом свою валентность. В дыхательной цепи направление транспорта электронов определяется величиной окислительно-восстановительного потенциала цитохромов.

В этой системе передавать электроны непосредственно на кислород способна только цитохромоксидаза (цит. а + а3). Из всех известных оксидаз она имеет наибольшее сродство к кислороду. Ингибиторами цитохромоксидазы являются СО, цианид, азид. Б растительных митохондриях кроме цитохромоксидазы функционирует оксидаза, не подавляемая цианидом и названная альтернативной оксидазой. Например, в митохондриях початков ароидных активность цианидустойчивой оксидазы в 10 раз превышает активность цитохромоксидазы.

Пероксидаза и каталаза. К пероксидазам относят целую группу ферментов, использующих в качестве окислителя пероксид водорода: классическую пероксидазу, НАД-пероксидазу, НАДФ-пероксидазу, пероксидазу жирных кислот, глутатионпероксидазу, цитохромпероксидазу и др. Все они работают по следующей схеме, где А — субстраты:

В последние 2 — 3 десятилетия показана полифункциональность пероксидаз. Помимо пероксидазной, у них имеется оксидазная функция, т. е. способность переносить электроны в отсутствие пероксидного кислорода на молекулярный кислород. Пероксидаза может также функционировать как анаэробная дегидрогеназа, например НАДH-дегидрогеназа, передающая электроны от восстановленных пиридиновых нуклеотидов на разные акцепторы.

Пероксид водорода, помимо пероксидазы, расщепляется также каталазой, в результате чего образуется молекулярный кислород. В реакции участвуют две молекулы пероксида, одна из которых функционирует как донор, а другая — как акцептор электронов.

Простетической группой пероксидазы и каталазы служит гем, в состав которого входит атом железа.

Оксигеназы. Наряду с оксидазами, которые используют молекулярный кислород как акцептор электронов, в клетках широко представлены оксигеназы, активирующие кислород, в результате чего он может присоединяться к органическим соединениям. Ферменты, внедряющие в субстрат два атома кислорода, называют диоксигеназами, а присоединяющие один атом кислорода — монооксигеназами или гидроксилазами. В качестве доноров электронов оксигеназы используют НАД(Ф)H, ФАДH2 и др.

Оксигеназы присутствуют во всех типах клеток. Они участвуют в гидроксилировании многих эндогенных соединений в частности аминокислот, фенолов, стеринов и др., а также в детоксикации чужеродных токсических веществ (ксенобиотиков).

Механизмы участия кислорода в метаболизме, активные формы кислорода и их значение в жизнедеятельности растительной клетки, эволюция энзиматических систем, участвующих во взаимодействии клеток с кислородом.

Эволюция энзиматических систем, участвующих во взаимодействии клеток с кислородом»

У современных организмов представлены 3 типа энергообмена − фотосинтез, дыхание, брожение.

Согласно принятым в настоящее время представлениям материальным и энергетическим фундаментом становления жизни на нашей планете служили органические соединения, возникшие из неорганических абиогенным путем. Теорией А.И.Опарина основано представление, согласно которому первичными формами живых существ были гетеротрофы, осуществляющие свой энергообмен анаэробным путем, по своему характеру относящимся к броженияю. Современные анаэробы гетеротрофы располагают каталитически активными системами энергообмена, включая дегидрогеназы, изомеразы, трансферазы, системы синтеза АТФ и др.

Следующим этапом развития биоэнергетики явилась фототрофность, которая была неразрывно связана с образованием каталитических систем принципиально нового типа − пигментов, обладающих способностью использовать поглощенные кванты света для перехода в состояние электронного возбуждения. Преобразование энергии свободного электрона в химическую достигалась при участии новой каталитической системы, организованной в цепь транспорта электронов.

Начальным звеном в эволюции фототрофности были фототрофные бактерии, способные в качестве доноров электронов использовать только высоковосстановленные соединения с низким окислительным потенциалом. Общей особенностью дошедших донас фотосинтезирующих бактерий явялется то, что система транспорта электронов у них включает цитохромы, флавиновые ферменты, хиноны, электронный поток сопряжен с фосфорелированием. Восстановление НАД осуществляется у бактерий в основном за счет АТФ, т.е. не фотохимическим, а биохимическим путем.

В дальнейшем ходе эволюции возникли организмы, обладающие механизмами мобилизации электронов от предельно окисленной формы водорода, в какой он находится в молекуле Н2О. Такими организмами являются зеленые растения, обладающие способностью к прямому восстановлению НАДФ.

Появление свободного кислорода в результате фотосинтеза вызвало неизбежность создания и отбора механизмов дезактивации кислорода путем его восстановления, что привело к переходу от анаэробного типа обмена к аэробному. При формировании каталитических систем дыхания были широко использованы элементы уже ранее существовавших механизмов ЭТЦ фотосинтетиков. Цепь переноса дыхания можно представить как освобожденную от сопряжения с пигментами ЭТЦ фотосинтеза.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.