Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Ббк 22. 33






САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

 

Описания лабораторных работ Учебной лаборатории физического эксперимента физического факультета СПбГУ

ЧАСТЬ V

ЭЛЕКТРИЧЕСТВО

ПЕРЕМЕННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК

 

САНКТ-ПЕТЕРБУРГ•2004


ББК 22.33

 

Утверждено на заседании Кафедры общей физики 2 физического факультета СПбГУ

 

Ответственные редакторы: В.И. Коротков, Е.П. Зароченцева

 

Авторы: А.В. Бармасов, С.О. Высоцкая, А.Е. Грищенко, Л.В. Густова, Е.П. Зароченцева, Т.Н. Компаниец, В.И. Коротков, Н.А. Малешина,

В.А. Черенковский. Составитель: А.В. Бармасов

 

Рецензент: докт.физ.-мат. наук., проф. В.А. Соловьев (СПбГУ)

 

 

Печатается по постановлению
Редакционно-издательского совета
С.-Петербургского государственного университета

Б24 Описания лабораторных работ Учебной лаборатории физического эксперимента физического факультета СПбГУ. Часть V: Электричество. Переменный электрический ток / А.В. Бармасов, С.О. Высоцкая, А.Е. Грищенко и др.; Под ред. В.И. Короткова, Е.П. Зароченцевой; СПб., 2004. - 111 с.

 

Данное пособие содержит описания лабораторных работ по разделу «Электричество. Переменный электрический ток» курса общей физики и представляет собой существенно переработанное и дополненное переиздание учебного пособия «Электричество (переменный ток). Ч. 5 / Под ред. В.Е. Холмогорова и Ю.Г. Шишкина.» (Л.: Изд-во ЛГУ, 1990. 83 с.). Каждая лабораторная работа рассчитана на 4 академических часа. Студент допускается к выполнению лабораторной работы после самостоятельного изучения необходимой теории, ознакомления с порядком выполнения основных операций и сдачи зачёта по технике безопасности. Предназначено для студентов факультетов: биолого-почвенного, географии и геоэкологии, геологического, медицинского, физического (вечернее отделение), химического и др.

ББК 22.33

Ó А.В. Бармасов,

С.О. Высоцкая,

А.Е. Грищенко и др., 2004.

Ó Санкт-Петербургский

государственный

университет, 2004.


СОДЕРЖАНИЕ

1. Электроизмерительные приборы...............................................  
Классификация электроизмерительных приборов...................  
Определение погрешности измерения на электроизмерительных приборах. Класс точности прибора............................  
Масштабные измерительные преобразователи (МИП)...........  
Ваттметр.......................................................................................  
2. Переменный электрический ток................................................  
Сопротивление R.........................................................................  
Емкость С.....................................................................................  
Индуктивность L..........................................................................  
3. Понятие о векторных диаграммах.............................................  
Последовательное соединение элементов.................................  
Параллельное соединение элементов........................................  
4. Мощность переменного тока.......................................................  
5. Мостовой метод измерения..........................................................  
Мост Уитстона.............................................................................  
Мосты переменного тока............................................................  
Лабораторная работа 42 Проверка закона ома для переменного тока.....................................  
Лабораторная работа 43 Исследование цепей переменного тока с активными и индуктивными сопротивлениями......................................................................  
Лабораторная работа 44 Измерение емкостей конденсаторов с помощью моста переменного тока...............................................................................................  
Лабораторная работа 45 Измерение индуктивностей катушек с помощью моста переменного тока...............................................................................................  
Лабораторная работа 46 Изучение работы трансформатора.....................................................  
Лабораторная работа 47 Резонанс напряжений в цепях переменного тока.............................  
Лабораторная работа 48 Определение коэффициента мощности однофазного переменного тока и построение треугольников мощностей..................................  
Лабораторная работа 50 Изучение свойств ферромагнитных веществ с помощью электронного осциллографа.......................................................................  
Приложения........................................................................................  
Аналоговые электроизмерительные приборы..........................  
Краткая характеристика электроизмерительных приборов наиболее распространенных систем..........................................  
Измерительные трансформаторы тока и напряжения.............  
Построение векторных диаграмм..............................................  
Литература..........................................................................................  

ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Измерение – это нахождение опытным путем с оцененной точностью значения заранее выбранной физической величины путем сравнения ее с эталонной величиной. Электрические измерения осуществляются с помощью электроизмерительных приборов (ЭИП).

Объектами электрических измерений могут быть как электрические и магнитные величины, так и неэлектрические величины (такие, например, как давление, скорость, температура). Для того чтобы измерить неэлектрическую величину с помощью электроизмерительных приборов, ее надо преобразовать в зависящую от нее электрическую величину. Устройства для измерения неэлектрических величин должны содержать преобразователь, соединительные провода и электроизмерительный прибор, шкала которого проградуирована в единицах измеряемой величины.

В качестве одного из наиболее простых примеров можно привести измерение температуры с помощью термопары. Величина электродвижущей силы (эдс) термопары зависит от разности температур между горячим и холодным спаями, т.е. термопара является в данном случае преобразователем. С помощью проводов к ней подключается милливольтметр, измеряющий эдс термопары (термоЭДС). В этом случае шкалу милливольтметра можно проградуировать в единицах температуры.

Классификация электроизмерительных приборов

ЭИП можно классифицировать по различным признакам:

По характеру снимаемых показаний измеряемой величины.

Показывающие ЭИП. Это приборы, предварительно отградуированные и позволяющие производить по шкале отсчет численного значения измеряемой величины. С помощью таких приборов можно сразу получить значение измеряемой величины.

Регистрирующие ЭИП. Эти приборы допускают считывание и регистрацию или только регистрацию показаний. К таким приборам относятся самопишущие приборы, дающие запись показаний в виде диаграммы, печатающие приборы, выводящие показания в цифровой форме, а также осциллографы. Для получения значений измеряемой величины такие приборы требуют специальной градуировки.

По способу преобразования измеряемой величины и способу считывания показаний.

Аналоговые ЭИП. В этих приборах показания являются непрерывными функциями изменений измеряемых величин.

Примером аналогового прибора может служить стрелочный амперметр (рис. 1).

Рис. 1.

При увеличении тока стрелка амперметра смещается плавно. Тем не менее плавность изменения показаний не означает, что величина тока может быть измерена с любой точностью (см. ниже).

Цифровые приборы. В таких приборах непрерывно изменяющийся измеряемый параметр преобразуется в дискретный параметр (число), которое отображается на его отсчетном устройстве – панели цифровой индикации (рис. 2).

Рис. 2.

При плавном изменении тока показания прибора изменяются скачками.

Приборы сравнения. Это приборы, предназначенные для непосредственного сравнения измеряемой величины с величиной, значение которой известно. К таким приборам относятся, например, мосты, потенциометры, компенсаторы напряжения и тока.

Простейшим примером схемы сравнения может служить компенсатор напряжения. Принцип работы компенсатора напряжения показан на рис. 3.

ЭДС источников равны, когда показания гальванометра равно нулю. Основное достоинство такого способа измерения состоит в том, что в этом случае не происходит отбора тока от источника. Этот способ удобен для измерения ЭДС источников с большим внутренним сопротивлением.

Рис. 3.

Особенно хорошо видны преимущества методов сравнения при измерении сопротивлений. Можно определить сопротивление, воспользовавшись амперметром и вольтметром (R = U / I). Такой способ (способ амперметра и вольтметра) является наиболее простым, но наименее точным из-за присущей ему систематической ошибки.

Два варианта включения измерительных приборов показаны на рис. 4. На рис. 4, а приведена схема «правильная по напряжению», но амперметр показывает сумму токов, текущих через вольтметр и нагрузку. На рис. 4, б – схема «правильная по току», но вольтметр показывает сумму падений напряжения на амперметре и нагрузке.

Рис. 4.

Широкое применение для измерения сопротивлений получили мосты, питаемые постоянным током, так как их уравновешивание несложно и подбор подходящего гальванометра не составляет особого труда.

Примером такой схемы сравнения может служить четырехплечевой мост постоянного тока, применяемый для измерения сопротивлений (рис. 5).

В одно из плеч моста включен неизвестный резистор RX. При измерении сопротивления таким методом, неизвестное сопротивление сравнивается с известными сопротивлениями моста, а включенный в одну из диагоналей моста гальванометр Г служит индикатором отсутствия тока.

Рис. 5.

Точность измерения в данном случае определяется точностью значений известных сопротивлений и чувствительностью гальванометра.

Мосты переменного тока применяются, в основном, для измерения индуктивностей и емкостей.

Более подробно – см. «Мостовой метод измерения».

Определение погрешности измерения на электроизмерительных приборах. Класс точности прибора

Следует помнить, что никакое измерение, т.е. сравнение с эталонной величиной, не может быть выполнено абсолютно точно. Результат измерения всегда содержит некоторую ошибку. Кроме того, надо учесть, что измерение проводится не путем сравнения с самим эталоном, а с помощью измерительного прибора (который при поверке был сравнен с эталоном). Очевидно, что, измеряя с помощью этого измерительного прибора, мы не можем сделать ошибки меньшей, чем та, которая определяется погрешностью измерительного устройства.

Разность между показаниями прибора и действительным значением измеряемой величины называется абсолютной погрешностью D А.

D А = ê А ИЗМА ДЕЙСТ ê. (1)

Отношение абсолютной погрешности к действительному значению измеряемой величины, выраженное в процентах, называется относительной погрешностью:

. (2)

Приведенные определения относительной и абсолютной погрешности не дают возможности узнать их величину, так как действительное значение измеряемой величины нам неизвестно. Определить величины погрешностей при электрических измерениях становится возможным, если известен класс точности прибора (gКЛ Т). Он дает предельную абсолютную погрешность, выраженную в процентах от номинального показания прибора (максимального при данном пределе измерения) А НОМ:

gКЛ Т = . (3)

Класс точности указан на шкале прибора (рис. 6).

Зная класс точности прибора, можно легко определить абсолютную погрешность измерения D А:

D А = . (4)

Например, для катушки сопротивления в 1000 Ом класса точности 0, 05 абсолютная погрешность:

D А = = 0, 5 (Ом).  

Относительную погрешность также можно вычислить через класс точности прибора. По определению относительная погрешность:

. (5)

Учитывая, что действительное значение измеряемой величины А ДЕЙСТ и показания прибора А ИЗМ примерно равны (А ДЕЙСТ» А ИЗМ), и, используя формулу (4), получаем:

. (6)

Видно, что относительная погрешность измерений будет тем меньше, чем ближе снимаемые показания к номинальному значению для данного прибора, т.е. к концу шкалы. Следовательно, при работе с многопредельными ЭИП нужно так выбирать предел измерения прибора, чтобы показания считывались со второй половины шкалы. Следует помнить, что номинальное значение многопредельного ЭИП определяется положением, в котором стоит переключатель пределов при данном измерении.

При работе с многопредельными приборами нужно внимательно рассчитывать цену одного деления шкалы ЦД. Под делением следует понимать не разность между штрихами, а разность между ними в соответствии с оцифровкой шкалы. Цена деления равномерной шкалы равна отношению номинального значения показания прибора (предела измерения) к общему числу делений N на шкале прибора: ЦД = . Численное значение измеряемой величины А ИЗМ равно цене деления ЦД, умноженной на измеренное число делений N ИЗМ по шкале:

А ИЗМ = ЦД· N ИЗМ. (7)

Рассмотрим примеры определения погрешностей для многопредельных ЭИП.

Пример 1.
Переключатель пределов измерения   → ←   ←   Шкала прибора Класс точности gКЛ Т (0, 5)
Рис. 6.

На рис. 6 изображен многопредельный вольтметр. Вычислить абсолютную и относительную погрешности определения напряжения. Класс точности вольтметра 0, 5.

Номинальное значение напряжения 300 В (определяется положением переключателя пределов напряжения).

Цена деления данного предела измерения ЦД = = 2 В/дел.

Измеренное значение напряжения U ИЗМ = 2 В/дел.·75 дел. = 150 В.

Абсолютная погрешность измерения D U = = 1, 5 (В).

Относительная погрешность измерения g0 = = 1, 0%.

Пример 2

Рис. 7.

На рис. 7 изображен тот же многопредельный вольтметр при другом положении переключателя пределов измерений. Вычислить абсолютную и относительную погрешности определения напряжения.

Номинальное значение напряжения 150 В.

Цена деления данного предела измерения ЦД = 150 В / 150 дел. =
1 В/дел.

Измеренное значение напряжения U ИЗМ = 1 В/дел.× 150 дел. =
150 В.

Абсолютная погрешность измерения D U = = 0, 75 (В).

Относительная погрешность измерения g0 = = 0, 5%.

Таким образом, выбор наиболее подходящего предела измерения приводит к уменьшению как абсолютной, так и относительной погрешности.

Масштабные измерительные преобразователи (МИП)

При необходимости измерения токов и напряжений, превышающих верхний предел измерения используемого прибора, используются МИПы.

Для приборов постоянного тока в качестве МИП используются шунты и добавочные сопротивления. Для приборов переменного тока – добавочные резисторы (для напряжений до 30 кВ и частот от 10 Гц до 20 кГц) и измерительные трансформаторы тока и напряжения.

Расчет шунта к амперметру

При измерении тока амперметр включается последовательно с нагрузкой. Если амперметром требуется измерить ток, превышающий верхний предел измерения, то параллельно амперметру включается шунт с сопротивлением R Ш (рис. 8). Шунт представляет собой толстую константановую или манганиновую пластину. Применение этих сплавов для изготовления шунтов связано с тем, что их сопротивление слабо зависит от температуры.

Рис. 8.

На рис. 8 показана схема подключения шунта R Ш к амперметру. R А – внутреннее сопротивление амперметра, которое мало по сравнению с сопротивлением нагрузки R Н для того, чтобы включение амперметра последовательно с нагрузкой не приводило к существенным изменениям тока в цепи нагрузки. I – ток через сопротивление нагрузки R Н; I Ш – ток через шунт с сопротивлением R Ш; I А – ток через амперметр с сопротивлением R А.

По первому правилу Кирхгофа алгебраическая сумма токов в узле равна нулю:

I = I А + I Ш

и, следовательно,

I Ш = II А.

Падение напряжения между точками а и b:

Uаb = I А· R А = I Ш· R Ш.

Таким образом, для того, чтобы с помощью данного амперметра измерить ток I, сопротивление шунта должно быть

R Ш = , (8)

где I / IA = nкоэффициент шунтирования, показывающий, во сколько раз расширяется предел измерения амперметра при подключении шунта.

Фактический ток в цепи определяется произведением показаний прибора и множителя n.

Рис. 9.

Реальный шунт (рис. 9) должен иметь четыре контакта: к двум из них подключается прибор, а к двум другим – соединительные провода электрической цепи.

 

Пример 3.

Рассчитать шунт к миллиамперметру на 10 m А с внутренним сопротивлением 500 Ом, если надо измерить ток 10 А.

Воспользуемся формулой (8):

Расчет добавочного сопротивления к вольтметру

Для измерения напряжения вольтметр включается параллельно с нагрузкой. Если вольтметром требуется измерить напряжение, превышающее верхний предел измерения, то последовательно вольтметру включают добавочное сопротивление R Д.

Рис. 10.

На рис. 10 показана схема подключения добавочного сопротивления R Д к вольтметру. R V – внутреннее сопротивление вольтметра. Оно должно быть большим по сравнению с сопротивлением нагрузки R Н для того, чтобы включение вольтметра параллельно нагрузке не приводило к существенным изменениям напряжения на нагрузке. U ИЗМ – измеряемое напряжение; U НОМ – предел измерения вольтметра.

Ток, текущий через вольтметр:

,  

следовательно, добавочное сопротивление должно быть

. (9)

 

Пример 4

Рассчитать добавочное сопротивление к вольтметру на 100 В для измерения напряжения 300 В. Внутреннее сопротивление вольтметра R V = 3000 Ом.

.

Добавочные сопротивления могут служить и для преобразования рода измеряемой величины (напряжения в ток и наоборот). Рассмотрим, как измерить напряжение с помощью амперметра. Для этого последовательно с амперметром включается большое сопротивление R Д (рис. 11).

Рис. 11.

Неизвестное напряжение U X = I А·(R Д + R А), где R А – внутреннее сопротивление амперметра. Если величины внутреннего и добавочного сопротивлений известны, то, измеряя ток с помощью амперметра, легко вычислить искомое напряжение.

Ваттметр

Для измерения мощности в цепи постоянного тока не требуется специального прибора. Мощность в цепи постоянного тока может быть определена, если известны показания вольтметра и амперметра, т.е. напряжение и ток, и вычислена простым перемножением этих величин:

P = U · I.

В цепи переменного тока мощность зависит не только от величин напряжения и тока, но и от сдвига фаз между ними (подробнее см. раздел «Мощность переменного тока»):

P = U · I ·cosφ.

Поэтому для измерения мощности в цепях переменного тока необходим специальный прибор – ваттметр.

Ваттметр электродинамической системы имеет две катушки (сопротивление катушек малó): неподвижную («токовую») К1, включаемую последовательно нагрузке, и подвижную («вольтовую») К2, включаемую параллельно нагрузке. В цепь подвижной катушки включается добавочное сопротивление R Д. Сопротивление R Д должно быть большим по величине для того, чтобы ток через цепь, содержащую это сопротивление, был незначительным по сравнению с током нагрузки. То есть сопротивление «вольтовой» цепи должно быть большим, как у всякого вольтметра.

Рис. 12.

Схема включения ваттметра (рис. 12): К1 – неподвижная («токовая») катушка («цепь тока»); К2 – подвижная («вольтовая») катушка («цепь напряжения»); R H – сопротивление нагрузки; R Д – добавочное сопротивление в цепи подвижной катушки.

Как видно из схемы, через неподвижную катушку проходит тот же ток, что и через сопротивление нагрузки (I 1(t)), а через подвижную протекает ток, пропорциональный напряжению на нагрузке. Таким образом, мгновенное значение тока неподвижной катушки равно току нагрузки, а ток подвижной катушки пропорционален напряжению на нагрузке и должен совпадать с ним по фазе. Чтобы ток совпадал по фазе с напряжением, добавочное сопротивление R Д должно быть безиндуктивным, т.е. чисто активным сопротивлением. Величина этого сопротивления должна быть много больше индуктивного сопротивления катушки К2. В таком случае можно считать все сопротивление цепи напряжения активным и ток I 2(t) в подвижной катушке будет равен

, (10)

где U 0 – амплитуда напряжения на нагрузке, w – частота переменного тока, j – сдвиг фаз между током и напряжением на нагрузке. Как уже было отмечено выше, сдвиг фаз между током в подвижной и неподвижной катушках будет равен сдвигу фаз между током и напряжением на нагрузочном сопротивлении только в том случае, когда сопротивление «вольтовой» цепи ваттметра можно считать активным.

Согласно закону Ампера, сила, действующая на элемент тока со стороны другого элемента тока, пропорциональна величине каждого из элементов тока. Следовательно, мгновенный вращающий момент M (t), действующий на подвижную катушку, пропорционален произведению токов в подвижной и неподвижной катушках:

M (t) = с· I 1(tI 2(t), (11)

где с – константа пропорциональности.

Подставляя в формулу (11) выражение для тока в подвижной катушке (10), получаем:

. (12)

Усредняя M (t) за период Т, находим:

. (13)

Таким образом, вращающий момент, действующий на подвижную катушку, и, следовательно, угол ее поворота, пропорционален средней мощности в цепи переменного тока.

Реальный ваттметр имеет 4 клеммы, на принципиальной схеме они обозначены буквами A, B, C и D. При включении ваттметра в цепь переменного тока, на вращающий момент не влияет одновременное изменение направления тока в обеих катушках, но если поменять направление тока только в одной катушке, то направление вращающего момента изменится на 180°. Для предотвращения неправильного включения ваттметра клеммы, соответствующие относительным «началам» каждой катушки, отмечены звездочкой (*). Эти клеммы называют генераторными. Стрé лка ваттметра отклоняется в нужную сторону, если обе эти клеммы присоединены к одному полюсу источника. Обычно эти клеммы уже соединены вместе проводом (A и B). Клеммы A и D подсоединяют к источнику напряжения, а нагрузку включают между клеммами C и D.

Многопредельные ваттметры имеют раздельные переключатели напряжения и тока для «вольтовой» и «токовой» обмоток. Изменение пределов измерения по току осуществляется путем последовательного или параллельного включения двух половин неподвижной катушки, а по напряжению – включением добавочных сопротивлений в цепь подвижной катушки. Для таких приборов предел измерения по мощности в ваттах равен произведению пределов измерения по току в амперах и по напряжению в вольтах. В общем случае предельная нагрузка ваттметра и конечное значение шкалы у ваттметра не совпадают в отличие от большинства других приборов. При чисто реактивной нагрузке сдвиг фаз между током и напряжением j = 90°. В этом случае ваттметр легко вывести из строя, так как при любой силе тока, протекающего через ваттметр, его показание будет всегда равно нулю (cоsj = 0). Обычные ваттметры рассчитаны на измерения, при которых соsj > 0, 8. Исключение составляют ваттметры, специально предназначенные для малых значений соsj (малокосинусные ваттметры).

Рис. 13.

На рис. 13 изображена верхняя панель многопредельного ваттметра класса точности 1, 5. При данном положении переключателей предельное (номинальное) значение измеряемой мощности будет P НОМ = 300 В · 2 А = 600 Вт. Варьируя положение переключателей, предел измерения данного ваттметра можно изменять от 75 Вт до 1800 Вт.

При работе с многопредельными ваттметрами нужно внимательно рассчитывать цену одного деления шкалы ЦД. Цена деления шкалы равна отношению номинального значения мощности (предел измерения ваттметра) к общему числу делений N на шкале прибора: ЦД = P НОМ/ N. Для прибора, изображенного на рис. 13, цена деления ЦД = 600 Вт/150 дел. = 4 Вт/дел.

Численное значение измеряемой мощности P ИЗМ равно цене деления, умноженной на число делений по шкале (в данном случае ваттметр показывает 100 делений): P ИЗМ = 4 Вт/дел. ´ 100 дел. = 400 Вт.

Так же, как и для других электроизмерительных приборов, величина как абсолютной, так и относительной погрешности, зависит от выбранного предела измерений.

При положении переключателей, изображенном на рис. 13, абсолютная погрешность D P измеренной мощности будет, согласно формуле (4):

9 (Вт),

а относительная погрешность g0 измерения мощности, согласно (6):

.

Если проводить измерения при другом положении переключателей (рис. 14), то ту же самую величину мощности (400 Вт) можно измерить тем же ваттметром с меньшей погрешностью.

Рис. 14.

Предел измерения ваттметра (номинальное значение мощности) в данном случае будет: P НОМ = 150 В ´ 3 А = 450 Вт,

цена деления: ЦД = 450 Вт / 150 дел. = 3 Вт/дел.,

абсолютная погрешность: D P = (gКЛ.Т.·PНОМ)/100 = (1, 5·450)/100 = 6, 75 (Вт),

относительная погрешность:

.

Таким образом, выбор наиболее подходящего предела измерения приводит к уменьшению как абсолютной, так и относительной погрешности.

 

Читайте также раздел «Приложения».


ПЕРЕМЕННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК

Переменный электрический ток – это электрический ток, изменяющийся во времени. К переменному току относят различные виды импульсных, пульсирующих периодических и квазипериодических токов. В технике под переменным током обычно подразумевают периодические токи переменного направления. Чаще всего применяется переменный ток, сила которого меняется во времени по гармоническому закону (гармонический, или синусоидальный переменный ток).

Рассмотрим процессы, происходящие в цепях, по которым протекает переменный гармонический ток. Предположим, что режим прохождения тока установился, т.е. собственные колебания в цепи затухли, и физические процессы в цепи представляют собой вынужденные колебания. Такие предположения позволяют избежать математических трудностей, связанных с решением дифференциальных уравнений, и существенно упростить анализ процессов происходящих в цепях переменного тока.

Рассмотрим частные случаи, когда переменное напряжение U (t) = U 0·cosw t подается или на сопротивление R, или на емкость C, или на индуктивность L.

Сопротивление R

Если в качестве нагрузки выступает активное сопротивление R, то ток в цепи определяется соотношением:

 

Видно, что в такой цепи колебание тока происходит синфазно с колебаниями напряжения, без сдвига по фазе между напряжением и током. Амплитудные значения тока и напряжения связаны соотношением

. (14)

Емкость С

Если цепь состоит только из емкости C, то изменение тока со временем определяется скоростью изменения заряда конденсатора I = d q /d t. Так как q = C · U (t), то

, (15)

где I 0 = w· C · U 0.

То есть ток в цепи, состоящей только из емкости, изменяется со временем, так же как и напряжение, по синусоиде, но опережает по фазе напряжение на . Временнá я зависимость напряжения и силы тока в такой цепи представлена на рис. 15.

Рис. 15.

Кроме того, видно, что если ввести понятие емкостного сопротивления , то амплитудные значения напряжения U 0 и тока I 0 связаны законом Ома

. (16)

Сдвиг по фазе можно объяснить следующим образом. Возьмем заряженный конденсатор, который начинает разряжаться. Это значит, что напряжение начинает убывать, а ток - увеличиваться по абсолютной величине. Когда напряжение на обкладках конденсатора окажется равным нулю, ток достигнет максимума. Далее происходит изменение знака напряжения, что соответствует перезарядке конденсатора. После чего напряжение по абсолютной величине начинает увеличиваться, а сила тока уменьшаться. Описанные процессы иллюстрируют возникновение сдвига по фазе между напряжением и силой тока на .

Индуктивность L

Пусть через катушку (соленоид), характеризующуюся постоянной самоиндукции (или индуктивностью) L, проходит переменный ток I (t) = I 0·cosw t.

По закону электромагнитной индукции (Фарадея - Ленца) в любом замкнутом контуре при изменении магнитного потока через поверхность (площадь), ограниченную этим контуром, возникает ЭДС индукции E, пропорциональная скорости изменения магнитного потока

,  

где Φ – магнитный поток, k – коэффициент (в системе СИ k = 1). Знак «минус» означает, что направление индукционного тока таково, что создаваемое им магнитное поле препятствует изменению первичного магнитного потока.

Частным случаем проявления этого эффекта является возникновение самоиндукции при любых изменениях тока в цепи. В простейшем случае (при отсутствии ферромагнетиков) Φ = L · I, где L – индуктивность проводника, зависящая от его размеров, формы и свойств среды. Изменения тока вызывают изменения создаваемого им магнитного потока, что в свою очередь приводит к появлению ЭДС самоиндукции E, равной

.  

ЭДС самоиндукции в цепи, состоящей из соленоида, в каждый момент времени компенсируется напряжением U, подаваемым на индуктивность L. То есть

. (17)

Тогда

, (18)

где U 0 = w· L · I 0.

Формула (18) показывает, что напряжение в цепи опережает ток на .

Если ввести понятие индуктивного сопротивления XL = w· L, то амплитудные значения напряжения и силы тока можно связать законом Ома:

. (19)

Согласно (14), (16) и (19) закон Ома справедлив для амплитудных значений напряжения и тока.

Закон Ома для мгновенных значений переменного тока можно использовать только для случая активного сопротивления R.

Величину переменного тока можно охарактеризовать амплитудными значениями тока или напряжения. Это целесообразно делать, например, при подборе изоляции каких-либо электротехнических деталей, так как «пробои» возникают именно в моменты, когда переменное напряжение достигает максимальных значений.

На практике обычно вводят понятие эффективных (действующих) значения величин силы тока I эфф и напряжения U эфф, чтобы формула для поглощаемой (отдаваемой сопротивлению) мощности имела тот же вид, что и для цепей постоянного тока[1]:

, (20)
. (21)

Тогда

 

P = I эфф· U эфф·cosφ. (22)

 

Легко показать, что эффективное значение переменного тока I эфф равно такому значению постоянного тока I, который выделяет на

сопротивлении R за одно и то же время t столько же тепла Q, что и данный переменный ток.

В обозначениях переменного напряжения U, и силы тока I, под U и I обычно понимают эффективные значения тока и напряжения. Напряжение сети переменного тока «220В» является именно эффективным напряжением, и именно эффективные значения тока и напряжения измеряют амперметры и вольтметры.


ПОНЯТИЕ О ВЕКТОРНЫХ ДИАГРАММАХ

Реальные электрические цепи представляют какие-либо комбинации простейших элементов R, C и L.

Чтобы определить связь между током и напряжением в цепи, включающей несколько различных элементов, необходимо уметь складывать гармонические колебания одной частоты, но с разными амплитудами и фазами. Такую задачу аналитически бывает решить сложно, но существует графический метод, позволяющий сделать это достаточно просто и наглядно, – это метод векторных диаграмм.

 
 

Данный метод основан на том, что изменяющуюся по гармоническому закону величину, например, a (t) = A 0·sin(w t + j) (или a (t) = A 0·cos(w t + j)), можно представить как проекцию на ось ординат (или ось абсцисс) радиус-вектора, вращающегося против часовой стрелки с угловой скоростью w (рис. 16) – a 1 = A 0·sinω t 1, a 2 = A 0·sinω t 2.

Рис. 16.

Длина такого вектора должна быть равна амплитуде колебаний, т.е. в данном случае равна A 01. Начальное его положение при t = 0 должно составлять с осью X угол j (j – начальная фаза колебаний). Совокупность нескольких векторов, изображающих гармонически изменяющиеся величины одной и той же частоты называется векторной диаграммой.

Взаимная ориентация векторов сохраняется в любой момент времени, если складываемые колебания имеют одну и ту же частоту, поэтому для построения векторных диаграмм токов и напряжений достаточно указать их фазовые углы в момент t = 0.

 
 

При построении векторных диаграмм используется математическая теорема, согласно которой проекция геометрической суммы векторов на любую ось равна алгебраической сумме их проекций на ту же ось. Поэтому задача сложения выражений типа U (t) = U 0·sin(w t + j) сводится к простой графической задаче сложения векторов (рис. 17 – u 1 = U 10·sinφ 1, u 2 = U 20·sinφ 2, u = u 1 + u 2 = U 0·sinφ).[2]

 

Рис. 17.

Последовательное соединение элементов

Рассмотрим последовательное соединение емкости, индуктивности и активного сопротивления, к которым приложено переменное напряжение U (t) = U 0·cosw t (рис. 18).

В случае последовательного соединения в каждый момент времени сила тока во всех участках цепи одна и та же, а сумма мгновенных падений напряжения на элементах равна значению приложенного к цепи напряжения в тот же момент времени:

U (t) = UR (t) + UC (t) + UL (t). (23)
   

Рис. 18.

Представим соотношение (23) в виде векторной диаграммы и с ее помощью найдем связь между амплитудными и мгновенными значениями тока и напряжения в рассматриваемой цепи.

 

а     б
Рис. 19.

UR совпадает по фазе с током, значит, вектор U 0 R направлен так же как вектор I 0, UC отстает от тока на p/2, значит, U 0 C развернут на p/2 «назад» относительно U 0 R , а U 0 L , соответственно «вперед» (рис. 19, а). Поскольку эти векторы вращаются с одной частотой w против часовой стрелки, то их взаимное расположение друг относительно друга не изменяется, и найти суммарное напряжение U 0 можно в любой момент времени (рис. 19, б).

Из рис. 19, б видно, что

 

U 02 = U 0 R 2 + (U 0 L U 0 C )2, (24)
, (25)

где j – угол между векторами I 0 и U 0.

Воспользовавшись формулами (14), (16) и (19) можно вместо (24) и (25) записать:

, (26)
. (27)

Величина называется полным сопротивлением цепи или импедансом, а формула (26) - обобщенным законом Ома. По аналогии с треугольником, образуемым амплитудными значениями падений напряжения, можно построить треугольник сопротивлений (рис. 20) Графически полное сопротивление будет представлять собой гипотенузу прямоугольного треугольника. Один катет такого треугольника равен R – его называют активным сопротивлением. Другой катет равен (w· L), эту составляющую полного сопротивления называют реактивным сопротивлением и обычно обозначают X:

X = XLXC = w· L. (28)

Рис. 20.

При условии w· L = полное сопротивление цепи минимально и равно активному сопротивлению R 0. Формула (26) показывает, что величина переменного тока в цепи существенно зависит от его частоты. При частоте w = амплитудные значения тока принимают максимальные значения I 0max = U 0/ R. Такое явление называют резонансом напряжений, а частоту w = называют резонансной частотой электрической цепи. Величина тока при резонансе получается тем больше, чем меньше активное сопротивление цепи.

Параллельное соединение элементов

Рассмотрим цепь переменного тока, содержащую параллельно соединенные элементы R, L и C (рис. 21).

Рис. 21.

Пусть U (t) = U 0·cosw t. Напряжение на всех элементах цепи одинаково и равно U (t). Мгновенное значение тока в неразветвленной части цепи I (t) равно сумме токов в параллельных участках:

I (t) = IR (t) + IC (t) + IL (t). (29)

В этом случае удобно строить векторную диаграмму для токов.

С учетом, что ток через сопротивление находится в фазе с приложенным напряжением, ток через участок, содержащий С, опережает напряжение на , а через участок, содержащий L, отстает от напряжения на , векторную диаграмму можно изобразить следующим образом (рис. 22).

Рис. 22.

Из диаграммы видно, что

I 0 = . (30)

При этом

I 0 R · R = = I 0 L ·w· L = U 0. (31)

Воспользовавшись векторной диаграммой и формулой (31), нетрудно получить выражения для амплитуды тока через неразветвленную часть цепи и для сдвига по фазе между приложенным напряжением и током

, (32)
. (33)

Из векторной диаграммы следуют и выражения для мгновенных значений тока в ветвях цепи

IR = , (34)
IL = , (35)
IC = U 0·w· C ·cos(w t + ). (36)

При условии, что w· L = , сдвиг фаз между током в неразветвленной части цепи и напряжением равен нулю (j = 0). При этом токи IL и IC находятся в противофазе и численно равны. Эти токи могут превосходить ток в подводящих проводах, что требует особенно внимательного соблюдения правил техники безопасности. Такая ситуация называется резонансом токов. При этом происходит периодический обмен энергией между электрическими и магнитными полями в емкости и индуктивности, а источник питания только компенсирует потери энергии на нагревание сопротивления R.

Резонанс токов в цепи с параллельным соединением элементов приводит к тому, что ток во внешней цепи имеет наименьшее значение.

Если убрать сопротивление R, то ток в подводящих проводах будет равен нулю, хотя в контуре, состоящем из L и C, ток может быть очень большим. Это устройство используется в резонансных усилителях, в которых колебательный контур настраивается на частоту сигнала, который требуется усилить.


МОЩНОСТЬ ПЕРЕМЕННОГО ТОКА

Напомним, что мощностью называется физическая величина, численно равная работе в единицу времени. Элементарная работа d A по переносу заряда d q, совершенная за время d t на участке цепи с падением напряжения U, определяется выражением

d A = U ·d q.

Тогда мгновенная мощность:

, (37)

где U (t) и I (t) – мгновенные значения напряжения и силы тока.

В цепях синусоидального переменного тока, содержащих активное сопротивление R, индуктивность L и емкость C, ток, в общем случае, сдвинут по фазе относительно напряжения на угол φ:

U (t) = U 0·cosω t,

I (t) = I 0·cos(ω t + φ),

где U 0 и I 0 – амплитудные значения напряжения и силы тока, ω – круговая частота. Тогда элементарная работа d A за время d t:

d A = U (tI (t)·d t = I 0· U 0·cosω t ·cos(ω t + φ)·d t. (38)

Мгновенная мощность переменного тока также является величиной переменной. Для оценки энергетических свойств электроустановок используется значение средней мощности.

Для определения средней мощности P достаточно подсчитать работу тока за один период колебания T:

(39)

Воспользуемся формулой произведения косинусов:

. (40)

Интеграл от первого слагаемого в квадратных скобках есть среднее значение косинуса за период и, следовательно, обращается в ноль. Таким образом, получили

. (41)

Величину P = I · U ·cosφ называют активной мощностью или средней мощностью, или просто мощностью переменного тока. Активная мощность в системе СИ измеряется в ваттах (1 Вт = 1 В ´ 1 А). Прибор, предназначенный для регистрации активной мощности, называется ваттметром (подробнее об устройстве и принципе действия ваттметра см. раздел «Ваттметр» в главе «Электроизмерительные приборы»).

Кроме активной мощности в теории переменных токов рассматривают полную (кажущуюся) мощность S = I · U и реактивную мощность Q = I · U ·sinj.

Для того чтобы понять смысл реактивной мощности, рассмотрим энергетические процессы в цепи переменного тока, содержащей индуктивность L. В такой цепи потребление мощности в каждый момент времени не сводится только к выделению тепла. В той части периода, где ток нарастает, в катушке индуктивности L возбуждается магнитное поле, на что расходуется энергия источника. Когда же ток начинает уменьшаться, энергия, запасенная магнитным полем катушки, возвращается обратно источнику. Таким образом, индуктивность является то потребителем, то генератором энергии, а в среднем за период расход энергии в индуктивности равен нулю.

Аналогичные колебания происходят в цепи переменного тока, содержащей емкость C. В этом случае энергия запасается в электрическом поле конденсатора. Реактивная мощность Q не совершает никакой полезной работы, однако, она оказывает существенное влияние на режим функционирования электрических цепей. Поэтому расчет проводов и других элементов цепей переменного тока производят, исходя из полной мощности, которая учитывает активную и реактивную составляющие.

Очевидно, что активная P, реактивная Q и полная S мощности имеют одинаковую размерность. Однако в электротехнике, в отличие от единиц активной мощности, для удобства полную мощность принято измерять в вольт-амперах (ВА), а единица измерения реактивной мощности Qвольт-ампер реактивный (ВАр).

Каким образом величины P, S и Q связаны между собой?

Для наглядности рассмотрим векторную диаграмму напряжений для последовательной цепи переменного тока, содержащей R, L и C, изображенную на рис. 23.

а б в

Рис. 23.

Сумма коллинеарных векторов UL и UC и перпендикулярного им вектора UR равна вектору U, который отображает общее падение напряжения в цепи. Он сдвинут относительно вектора тока I на угол j. Вектора U, UR и (UL + UC) образуют треугольник напряжений А0В (прямоугольный), причем катет АВ численно характеризует падение напряжения на чисто реактивной, а 0В – на чисто активной нагрузках:

АВ = U ·sinj, 0В = U ·cosj. (42)

Разделив стороны векторного треугольника напряжений на величину силы тока I, получаем треугольник сопротивлений A′ 0′ B′ (рис. 23, б), который уже не будет векторным. Умножив стороны треугольника напряжений на I, получаем треугольник мощностей A″ 0″ B″, также не векторный (рис. 23, в). Очевидно, что эти три треугольника подобны. Сопоставляя стороны треугольника мощностей и треугольника напряжений, заключаем:

0″ A″ = I · U = S ← полная мощность, (43)
0″ B″ = I · U ·cosj = S ·cosj = P ← активная мощность, (44)
А″ B″ = I · U ·sinj = S ·sinj = Q ← реактивная мощность. (45)

И, как видно из треугольника A″ 0″ B″, справедливо соотношение:

S 2 = P 2 + Q 2. (46)

То есть полная мощность является геометрической суммой активной и реактивной мощностей.

Стороны треугольника сопротивлений и треугольника мощностей по построению связаны следующим образом:

P = I 2· R, (47)
Q = I 2·(XLXC) = I 2· X, (48)
S = I 2· Z, (49)

где R – активное сопротивление цепи, X – реактивное сопротивление, XL = w L – индуктивное сопротивление, XC = – емкостное сопротивление, – полное сопротивление (импеданс) цепи переменного тока.

Если известны индуктивная QL i и емкостная QC i составляющие реактивной мощности и активная P i мощность каждого i -го потребителя, то полная мощность, на которую должен рассчитываться источник, составляет

. (50)

Величина cosj, стоящая в выражении для активной мощности (см. формулу (44)), показывает, какая часть полной мощности цепи приходится на долю активной мощности, поэтому cosj называют коэффициентом мощности.

Из формулы (50) видно, что коэффициент мощности можно увеличить, уменьшая второе слагаемое под корнем. Большинство промышленных потребителей (трансформаторы, электродвигатели) потребляют индуктивную реактивную мощность. Для уменьшения такой реактивной мощности параллельно индуктивной нагрузке включают емкость.


МОСТОВОЙ МЕТОД ИЗМЕРЕНИЯ

Мостовые схемы широко применяются в лабораторной практике для измерения электрических характеристик (например, R, C, L) методом сравнения с аналогичными величинами, значения которых известны. Такой метод обладает многими достоинствами, в частности, можно достичь большой точности измерений без использования сложных и дорогостоящих приборов.

Мост Уитстона

Простейшим примером мостовой схемы может служить «мост Уитстона» – схема, впервые разработанная в 1844 г. Чарльзом Уитстоном (Charles Wheatstone, 1802-75) для измерения сопротивлений (рис. 24).

Рис. 24.

Рассмотрим принцип действия мостовой схемы на этом простом примере (рис. 24). Мост Уитстона включает в себя четыре резистора (R1, R2, R3, R4) – четыре плеча моста, соединенные четырехугольником, источник тока (Е), включенный в одну диагональ моста, и гальванометр (Г), включенный в другую диагональ. Одно из сопротивлений неизвестно, три другие известны и хотя бы одно из них может изменяться. Варьируя величину регулируемого сопротивления, можно добиться такого состояния схемы, при котором разность потенциалов между точками С и D равна 0. Индикатором служит гальванометр, показывающий в этом случае отсутствие тока в ветви CD. В таком состоянии мост называется сбалансированным. Очевидно, что в этом случае

I 1 = I 2, I 3 = I 4, I 1· R 1 = I 4· R 4, I 2· R 2 = I 3· R 3.

Решив эту систему уравнений, получаем:

R 1· R 3 = R 4· R 2 или .

То есть если мост сбалансирован, то между сопротивлениями существует определенное соотношение и, следовательно, неизвестное сопротивление можно выразить через три другие.

Мосты переменного тока

Мостовые схемы можно применять и для измерения таких величин, как емкости (C) и индуктивности (L). Однако для этих целей уже необходимо использовать мосты переменного тока.

По аналогии с мостом Уитстона изобразим схему моста переменного тока (рис. 25).






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.