Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Свойства световых волн. Интерференция. Дифракция волн. Дисперсия света.






Интерференция – одно из ярких проявлений волновой природы света. Это интересное и красивое явление наблюдается при наложении двух или нескольких световых пучков. Интенсивность света в области перекрывания пучков имеет характер чередующихся светлых и темных полос, причем в максимумах интенсивность больше, а в минимумах меньше суммы интенсивностей пучков. При использовании белого света интерференционные полосы оказываются окрашенными в различные цвета спектра. С интерференционными явлениями мы сталкиваемся довольно часто: цвета масляных пятен на асфальте, окраска замерзающих оконных стекол, причудливые цветные рисунки на крыльях некоторых бабочек и жуков – все это проявление интерференции света.

Первый эксперимент по наблюдению интерференции света в лабораторных условиях принадлежит И. Ньютону. Он наблюдал интерференционную картину, возникающую при отражении света в тонкой воздушной прослойке между плоской стеклянной пластиной и плосковыпуклой линзой большого радиуса кривизны. Интерференционная картина имела вид концентрических колец, получивших название колец Ньютона.

Ньютон не смог с точки зрения корпускулярной теории объяснить, почему возникают кольца, однако он понимал, что это связано с какой-то периодичностью световых процессов.

Первым интерференционным опытом, получившим объяснение на основе волновой теории света, явился опыт Юнга (1802 г.). В опыте Юнга свет от источника, в качестве которого служила узкая щель S, падал на экран с двумя близко расположенными щелями S 1 и S 2. Проходя через каждую из щелей, световой пучок уширялся, поэтому на белом экране Э световые пучки, прошедшие через щели S 1 и S 2, перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.

Дисперсия света – это явление обусловленное зависимостью показателя преломления вещества от длины волны (или частоты

Литература

1. Детлаф А.А., Яворский Б.М, Курс физики: Уч. пос. для втузов. Изд. 4-е, испр. - 607 с. М: Высшая Школа, 1989г.

2. Трофимова Т.И. Краткий курс физики: Уч. пос. для вузов. Изд. 2-е, испр. – 352 с, М: Высшая Школа, 2002 г.

3. Савельев И.В. Курс общей физики. Механика. Молекулярная физика. 350с, т. М.Наука. 1989.

4. Грабовский Р.И. Курс физики; Учебник для вузов. Изд. 6-е - 608 с. {Учебники для вузов: Специальная литература}, СПб: Лань, 2002 г.

5. Трофимова Т.И. Курс физики: Учебное пособие для инженерно-технических специальностей ВУЗов, Изд. 6-е/ 7-е - 542 с. М: Высшая Школа, 1999 г.

Лекция № 12 (тезисы)

Тепловое излучение тел закона Стефана–Больцмана. Закон смещения Вина

Испускаемый источником свет уносит с собой энергию. Существует много различных механизмов подвода энергии к источнику света. В тех случаях, когда необходимая энергия сообщается нагреванием, т. е. подводом тепла, излучение называется тепловым или температурным. Этот вид излучения для физиков конца XIX века представлял особый интерес, так как в отличие от всех других видов люминесценции, тепловое излучение может находиться в состоянии термодинамического равновесия с нагретыми телами.

Пусть одно из тел в полости обладает свойством поглощать всю падающую на его поверхность лучистую энергию любого спектрального состава. Такое тело называют абсолютно черным. При заданной температуре собственное тепловое излучение абсолютно черного тела, находящегося в состоянии теплового равновесия с излучением, должно иметь тот же спектральный состав, что и окружающее это тело равновесное излучение. В противном случае равновесие между абсолютно черным телом и окружающем его излучением не могло бы установиться. Поэтому задача сводится к изучению спектрального состава излучения абсолютно черного тела. Решить эту задачу классическая физика оказалась не в состоянии.

Для установления равновесия в полости необходимо, чтобы каждое тело испускало ровно столько лучистой энергии, сколько оно поглощает. Это одна из важнейших закономерностей теплового излучения. Отсюда следует, что при заданной температуре абсолютно черное тело испускает с поверхности единичной площади в единицу времени больше лучистой энергии, чем любое другое тело.

В 1879 году Йозеф Стефан на основе анализа экспериментальных данных пришел к заключению, что интегральная светимость R (T) абсолютно черного тела пропорциональна четвертой степени абсолютной температуры T: R (T) = σ T 4 Этот закон получил название закона Стефана–Больцмана. λ mT = b или λ m = b / T. Это соотношение ранее было получено Вином из термодинамики. Оно выражает так называемый закон смещения Вина: длина волны λ m, на которую приходится максимум энергии излучения абсолютно черного тела, обратно пропорциональна абсолютной температуре T. Значение постоянной Вина b = 2, 898·10–3 м·К.

Успехи термодинамики, позволившие вывести законы Стефана–Больцмана и Вина теоретически, вселяли надежду, что, исходя из термодинамических соображений, удастся получить всю кривую спектрального распределения излучения черного тела r (λ, T). В 1900 году эту проблему пытался решить Д. Релей, который в основу своих рассуждений положил теорему классической статистической механики о равномерном распределении энергии по степеням свободы в состоянии термодинамического равновесия. Эта теорема была применена Релеем к равновесному излучению в полости. Несколько позже эту идею подробно развил Джинс. Таким путем удалось получить зависимость излучательной способности абсолютно черного тела от длины волны λ и температуры T: r (λ, T) = 8π kT λ –4

Это соотношение называют формулой Релея–Джинса. Оно согласуется с экспериментальными данными только в области достаточно длинных волн. Кроме того, из нее следует абсурдный вывод о том, что интегральная светимость R (T) черного тела должна обращаться в бесконечность, а, следовательно, равновесие между нагретым телом и излучением в замкнутой полости может установиться только при абсолютном нуле температуры.

Таким образом, безупречный с точки зрения классической физики вывод приводит к формуле, которая находится в резком противоречии с опытом. Стало ясно, что решить задачу о спектральном распределении излучения абсолютно черного тела в рамках существующих теорий невозможно. Эта задача была успешно решена C: \Documents and Settings\Балалар\Рабочий стол\Open Physics 2.6. Part 2\content\scientist\planck.html на основе новой идеи, чуждой классической физике.

Планк пришел к выводу, что процессы излучения и поглощения электромагнитной энергии нагретым телом происходят не непрерывно, как это принимала классическая физика, а конечными порциями – квантами. Квант – это минимальная порция энергии, излучаемой или поглощаемой телом. По теории Планка, энергия кванта E прямо пропорциональна частоте света: E = h ν, где h – так называемая постоянная Планка. h = 6, 626·10–34 Дж·с. Постоянная Планка – это универсальная константа, которая в квантовой физике играет ту же роль, что и скорость света в СТО.

Формула Планка хорошо описывает спектральное распределение излучения черного тела при любых частотах. Она прекрасно согласуется с экспериментальными данными. Из формулы Планка можно вывести законы Стефана–Больцмана и Вина. При h ν < < kT формула Планка переходит в формулу Релея–Джинса.

Решение проблемы излучения черного тела ознаменовало начало новой эры в физике. Нелегко было примириться с отказом от классических представлений, и сам Планк, совершив великое открытие, в течение нескольких лет безуспешно пытался понять квантование энергии с позиции классической физики.

Литература

1. Детлаф А.А., Яворский Б.М, Курс физики: Уч. пос. для втузов. Изд. 4-е, испр. - 607 с. М: Высшая Школа, 1989г.

2. Трофимова Т.И. Краткий курс физики: Уч. пос. для вузов. Изд. 2-е, испр. – 352 с, М: Высшая Школа, 2002 г.

3. Савельев И.В. Курс общей физики. Механика. Молекулярная физика. 350с, т. М.Наука. 1989.

4. Трофимова Т.И. Курс физики: Учебное пособие для инженерно-технических специальностей ВУЗов, Изд. 6-е/ 7-е - 542 с. М: Высшая Школа, 1999 г.

Лекция № 13 (тезисы)






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.