Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Передавальна функція гідроакустичного каналу




 

Дослідження впливу каналу зв'язку на проходження сигналу здійснюється за допомогою передавальної функції, що представляє собою оператор, що перетворить вхідний вплив лінійної системи у вихідну реакцію. Передавальна функція гідроакустичного каналу залежить від просторових координат, частоти і часу.

Сенс акустичної передавальної функції К полягає в наступному: якщо тональний сигнал з амплітудою S1 випромінюється в точці, координати якої визначаються радіус вектором, то сигнал, прийнятий в момент часу т в точці, яка визначається радіусом-вектором, буде мати вигляд

S2 = S1·К( , ,ω,t)·℮iωt (2.3)

Поглинання - вид втрат з іншим законом зміни в залежності від відстані в порівнянні з втратами при розширенні фронту хвилі.

Згідно класичної гідродинамічної теорії при поширенні акустичних хвиль у водному середовищі спостерігається поглинання звуку за рахунок дисипації енергії в в'язкої рідини. Фізична сутність вузького поглинання пов'язана з виникненням механічних напружень при деформаціях зсуву шарів рідини і незворотнім перенесенням імпульсу між ними.

Зміщена напруга пропорційно коефіцієнту динамічної (першої) в'язкості. Поширення механічної хвилі в середовищі супроводжується не тільки деформаціями зсуву, а й всебічного стиснення. При цьому порушується термодинамічна рівновага, що викликає дисипативні релаксаційні процеси, які прагнуть до відновлення цієї рівноваги. Інтенсивність процесів дисипації енергії характеризує коефіцієнт об'ємної (другий) в'язкості [4].

В'язке поглинання є домінуючим в прісній воді. У морі воно має суттєве значення лише на ультразвукових частотах. Поглинання звуку в морській воді на частотах від 5 до 50 кГц у багато разів більше, ніж у прісній, і пояснюється релаксаційною теорією Мандельштамма і Леонтовича взаємодії між молекулами рідини і розчинених у ній солей.

Релаксаційна теорія поглинання звуку є подальшим розвитком класичної і більш повно роз'яснює питання про поглинання звуку в частині, що віднесена класичною теорією до об'ємної (другий) в'язкості. Згідно релаксаційної теорії про коефіцієнт об'ємної в'язкості не можна говорити як про таку константі, оскільки її величина виявляється залежною від частоти [5].

 

 

 

Рис.2.5 Схема розрахунку передавального тракту

 

Розглянемо рівняння Нав'є-Стокса, представлене у вигляді [5,8]

 

, (2.4)

 

де u = u(r,t) - оригінал змінної, під якою можна розуміти, наприклад, звуковий тиск; с0 – постійна швидкість звуку; ρ – щільність води; b = (4/3)·η+ξ, η, ξ – коефіцієнти динамічної та об'ємної в'язкості відповідно; r = | - | – координата, відрахувавши від джерела u(0,t).



Перетворимо рівняння (2.4) за Лапласом при нульових початкових умовах:

 

. (2.5)

 

Тут U = U (R, S) - зображення функції і = і (г, г); S = iω - комплексна частота.

Позначимо

 

. (2.6)

 

Рішення рівняння (2.5) шукаємо у вигляді:

(2.7)

Якщо в (4) В ¹ 0, то при r® ¥ U® ¥, що не відповідає умові випромінювання і не має фізичного сенсу. Звідси В = 0. Для визначення константи А застосовуємо граничні умови для місця розташування джерела сигналу і (0, т), а з урахуванням перетворення Лапласа для його зображення U(0,s). Тут r=0, отже, U(0,s) = A і рівняння (2.7) прийме вигляд

U(r,s) = U(0,s)·℮-kr (2.8)

 

Передавальна функція, відповідна рішенням (2.8) рівняння (2.4), має вигляд

 

К0(s) = U(r,s) / U(0,s) = ℮-kr. (2.9)

Замінюючи s на iω, уявімо вираз (2.5) для коефіцієнта K у вигляді

 

. (2.10)

 

З фізичних міркувань ясно, що затухання хвилі не повинно бути занадто сильним, інакше замість поширення коливань виникне аперіодичний процес. Отже, амплітуда хвилі на відстанях порядку довжини хвилі r ≈ λ повинна змінюватися слабо, тобто exp(-kλ) ≈ 1 или kλ << 1. При розгляді малов’язких рідин, до яких відноситься вода, допущення kλ << 1 відповідає умові:

 

b2ω2/c04 ρ2 << 1, (2.11)

 

яка виконується навіть для надвисоких частот акустичних коливань ω ~ 2π•108 с-1. При виконанні умови (2.6) можливо розкласти (2.10) в ряд в околиці одиниці і, обмежуючись першими двома членами, записати [5,8]



 

. (2.11)

 

З (2.11) видно, що коефіцієнт до, що має фізичний зміст хвильового числа при поширенні акустичної хвилі в звуковбирною середовищі можна представити у вигляді двох доданків - хвильового числа ідеальної рідини до0 = ω / С0 і показника загасання

 

. (2.12)

З формули (2.12) видно, що з точки зору класичної гідродинамічної теорії показник загасання має квадратичну залежність від частоти.


 


mylektsii.ru - Мои Лекции - 2015-2019 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал